
An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

1

An Introduction to Embedded Systems

A cross platform approach using the Wiring programming paradigm with

practical examples utilizing Arduino IDE with chipKIT and Arduino hardware.

By: Jacob Christ

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

2

Lecture 1 – Embedded Development Tools and Overview

Class Goals / Accessing Prior Knowledge
This material was (and is being) developed over several years for a second year Electronics Class at Mt.

San Antonio College (affectionately known as Mt. SAC) in Walnut California. The class as listed in the

course catalog at the college as such that there is no collegiate prerequisite. Being as such, any student

should be able to walk into this class and be able to navigate through the material presented and

increase their understanding on of the subject matter. There is a caveat though, nearly every student

that comes through the class has at least a year of basic electronics under their belt. In the class if a

student doesn't have the prerequisite electronics experience needed for specific understanding the

instructor and fellow students can bring them up to speed quickly. Additionally, mastery that can be

achieved by studying this material is greatly affected by an individual's prior knowledge before entering

the class. This creates a rift between the highest achievers in the class and the lowest achievers. A clear

demarcation between the two groups is that the students at the top of the rung have had prior

experience writing computer software (in no specific language).

Some assumptions are made on my part based on my observation of the state of the common

knowledge of the world today. Here is a list of things I suspect you probably know. This list is given so

that if there is something you haven't seen or don't understand you can get yourself up to speed quickly

so as to not feel overwhelmed by the class.

Prior Electronics Experience

Almost every student that enters this class has taken classes in DC (ELEC 50A at Mt.SAC) AC (ELEC 50B at

Mt.SAC) and Digital Electronics (ELEC 56 at Mt.SAC).

Depending on the given year, about 25-50% of the students will have taken a class on electronic devices

(ELEC 51 at Mt.SAC). The devices classes covers diodes, rectifiers, regulators, power supply design,

transistor and op amp circuits.

A few will have taken microwave communications or industrial electronics classes.

Again, none of these classes are necessary, but knowing the subject matter from these classes frees your

mind to think about new concepts rather than having to learn material that may have overlapped with

these other classes in the given time we have in this class.

Prior Math Experience

Most (if not all) prior students have taken algebra but it drops off rapidly as we move from algebra to

geometry to intermediate algebra to college algebra to trigonometry to pre-calculus and finally to

calculus. Classes have had as few as one student that has had calculus and other times more than half

the class has had calculus experience. This class uses some concepts from arithmetic and algebra. In

lectures I will share some calculus concepts with the class but they should be refreshingly easy for

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

3

anyone with less than a calculus background, in fact the student would probably not even know its

calculus if not pointed out.

Prior Computer

I suspect that everyone reading this material will have at least seen and used a computer sometime in

their life. The skill levels are varied among students, but the following are necessary skills that if you are

week in you should seek immediate help.

Navigating the file system with a GUI tool (such as Explorer)

Changing Directories

Moving Files

Copying Files

Deleting Files

Internet

Using a web browser

Sending and Receiving e-mail with file attachments

Downloading files from the internet

Running (Launching) Programs

Installing Programs

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

4

What are we in for?
The following is an incomplete list of projects that are in the same vein of what this course is all about.

Let's take a look at some videos to get inspiration:

RC Servo Control: http://www.youtube.com/watch?v=q2GlwfWwr3w

Stepper Motor Control: http://www.youtube.com/watch?v=09ckLqR05zA

Stepper Motor Control: http://www.youtube.com/watch?v=wypy1KdI5a8

Super Chase: http://www.youtube.com/watch?v=kiaJECGEtAM

Light Cube: http://www.youtube.com/watch?NR=1&v=GUcX41pokZY&feature=endscreen

If the light cube intrigues you, then it might be worth noting here that by then end of the second lab you

will understand the electronics to complete this project and the astute student will understand this by

then end of lab one.

Function Generator: http://www.youtube.com/watch?v=gz_gVKWFN8E

Bike Computer: http://www.youtube.com/watch?v=O5YYsm_BqJQ

LED Clock: http://www.youtube.com/watch?v=q4RwP0UK8gM&feature=endscreen&NR=1

MakerBot: http://www.youtube.com/watch?v=zkppg84hxZg&list=PL16315F3CB6CF8637&index=2

CNC Machine: http://www.youtube.com/watch?v=SzFpiU6OSTQ

Spider Robot: http://www.youtube.com/watch?v=7L7oxoZEG-A

Arc Reactor: http://www.youtube.com/watch?v=W_Jsu_E0go0

Music Visualizer: http://www.youtube.com/watch?v=___XwMbhV4k

Drum Machine: http://www.youtube.com/watch?v=chEg6mAfaNA

Sound Generation: http://www.youtube.com/watch?v=nY1eQk3ezjM

These videos are for inspiration. In this class we will learn some fundamentals required to build these

types of projects but may not actually build anything like these.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

5

Overview of an Embedded System
From wikipedia: http://en.wikipedia.org/wiki/Embedded_system

An embedded system is a computer system designed for specific control functions within a larger

system, often with real-time computing constraints.[1][2] It is embedded as part of a complete device often

including hardware and mechanical parts. By contrast, a general-purpose computer, such as a personal

computer (PC), is designed to be flexible and to meet a wide range of end-user needs. Embedded

systems control many devices in common use today.[3] Embedded systems contain processing cores that

are either microcontrollers or digital signal processors (DSP).[4]

A processor is an important unit in the embedded system hardware. It is the heart of the embedded

system.[5]

The key characteristic, however, is being dedicated to handle a particular task. Since the embedded

system is dedicated to specific tasks, design engineers can optimize it to reduce the size and cost of the

product and increase the reliability and performance. Some embedded systems are mass-produced,

benefiting from economies of scale.

Physically, embedded systems range from portable devices such as digital watches and MP3 players, to

large stationary installations like traffic lights, factory controllers. Complexity varies from low, with a single

microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large

chassis or enclosure.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

6

Introduction to Microcontrollers
A microcontroller is a monolithic device that contains a CPU (Central Processing Unit), nonvolatile

memory (such as flash), volatile memory (such as SRAM) and a variety of peripherals devices.

They can be as small or smaller than 5 pin SOT-23 devices and as large as or larger than 144 pin BGA and

TQFP parts.

The reason for choosing to use a microcontroller for a design would be to gain the advantages of a

reprogrammable digital circuit in a form factor suited for a specific application when a general purpose

computing device is not able to complete the task due to size or cost.

Abuse of terminology (CPU acronym)

CPU is an acronym for Central Processing Unit and is often used to refer to a computer system, such as

“That beige box sitting next to my 24” flat screen monitor is my new CPU.” The “beige box” being

referred to in the aforementioned statement is a computer system and not a CPU, the CPU is the chip

inside the computer system known specifically as the microprocessor. As technology advances and

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

7

desktop computer become rarer as laptop and tablets take over this abuse of terminology seems to be

decreasing.

CPU Abstraction as a Microprocessor

Prior to the invention of the microprocessor in 1971 by Intel (the 4004) CPU’s were circuits consisting of

many chips to make up the function of a programmable information processing and manipulation

device.

http://www.intel.com/about/companyinfo/museum/exhibits/4004/index.htm

Computer System Abstraction as a Microcontroller

A microcontroller is a monolithic device that contains a

microprocessor and all the peripherals necessary to make a

complete system on a chip. Microcontrollers make building a

complete system a simple task by adding only a few

additional components to bring a design to fruition.

Microprocessor

Information processing unit of the chip often referred to as

the CPU. The CPU reads the stored program in program

memory, interprets the instructions that are primarily used

to direct the flow of information into and out of data

memory and into and out of peripherals. Additionally,

program flow control is handled by the microprocessor.

In desktop and laptop computers, the microprocessor is typically a standalone

chip and all the additional features that make up a microcontroller are

relegated to other chips that typically sit on the mother board. The ability to

put different technologies onto a single chip is blurring what traditional

computer architecture and an embedded architecture look like. Some

computers on a chip have existed for quite some time that allow for incredible

size reduction of computers allowing the creation of palm top computers.

Program Memory

Program memory is a non-volatile memory used to hold the application or operating system program for

the embedded device. Non-volatile refers to the ability for the memory to retain its value without power

applied to the chip.

The program stored in the non-volatile memory of a microcontroller program memory is often referred

to as firmware as opposed to software that would be loaded off of a hard drive on a PC.

Examples of types of non-volatile memory are:

Monolithic Device

mono = one, lithic = stone

The term monolithic device refers to

the entire part being built out of a

single silicone chip. The implications

are such that the manufacturing

process is simpler. Simplicity implies

reliability (single failure point) and

affordability (single part to purchase).

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

8

ROM

Read Only Memory, programmed at the factory and not erasable

PROM or OTP

Programmable Read Only Memory or One Time Programmable memory that cannot be erased once

programmed

EPROM

Erasable Programmable Read Only Memory

EEPROM

Electronically (byte) Erasable Programmable Read Only Memory

Flash Memory

Electronically (bank) Erasable Programmable Read Only Memory

Data Memory

Data memory is volatile memory used to hold program data while the program is running. Volatile

memory will not retain its values without power applied. Volatile memory is often called

RAM or RWM

RAM (Random Access Memory) or RWM (Read Write Memory).

The term RAM is quite popular but doesn’t quite tell the whole story since ROM type memory is also

random accessible. The better term is RWM since the memory can be altered on the fly while a program

is running without special considerations that are necessary to erase a ROM chip.

There are at least two common types of RWM; Static and Dynamic. Static RWM is built out of transistors

and is very fast and priced accordingly. Dynamic ram is built out of capacitors and is not as fast at static

RWM but can be built much denser and at a lower cost. Also the nature of storing values as charges in a

capacitor has the added complexity of requiring a dynamic ram controller to keep the correct values

refreshed while the memory is not in use.

Microcontrollers’ internal data memory is typical static RWM. Dynamic RWM is most commonly used as

the main memory of a PC.

Side note, the cache of a PC microprocessor is made of static RWM and is on the microprocessor, but

this was not always the case. Cache memory of older PC’s was external from the microprocessor.

Other Non-Volatile Storage

In addition to program and data memory, some microcontrollers have additional non-volatile storage

that can be used to store program data that survives power outages.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

9

Peripherals

The peripherals of the microcontroller are what really differentiate a microcontroller from a

microprocessor. The peripherals are used for the control and sensing of many things on a single chip.

Listed below are some common peripherals that can be found on a microcontroller. Do not be

discouraged if you do not recognize all, or for that matter any, of the peripherals for that is the purpose

of this text. However the list is by no means complete.

Parallel Ports

Serial Ports

UART
SPI
I2C
USB

Timers / Counters / PWM

Analog Circuitry

ADC’s
Comparators

What can a microcontroller do?

What are the limits of your imagination?

Advanced Understanding: The Church-Turing Thesis

In the 1936's Alan Turing and Alonzo Church independently postulated that not all numbers can be

computed. Church using what he called lambda calculus and Turing using a machine (later called a

Turing Machine by Church). Turing went further saying that any number that is computable can be

computed by his machine. Further, any machine that can emulate a Turing Machine can compute

any number that is computable (given sufficient memory). Microprocessors, and therefore

microcontrollers, can emulate Turing Machines and therefore, based on the Church-Turing Thesis,

can calculate any number that is computable. There are caveats, such as the limit of the memory

connected to the computer limits what is computable. Also, the thesis speaks nothing about the

speed of the computation which is dependent on many things (processor speed, architecture of the

computers, number of processors and efficiency of algorithm used).

Although the thesis states that a Turing Machine can compute any number that is computable it is

important to point out that not all numbers are computable. Incomputable numbers cannot be

determined with a Turing Machine.

There are several things that you should take away from this. The ability to solve a problem (in

computation) is not limited by any device that can emulate a turning machine. The embedded

computers we use in this class can solve any problem that any computer can solve.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

10

The PIC32MX440F256H microcontroller
The PIC32MX440F256H is an 32-bit PIC microcontroller. The speed of the CPU is 80MHz which roughly

translates into 80 million instructions per second (MIPS). It has 32K Kilobytes of RAM and 256 Kilobytes

of flash memory. An internal EEPROM: 1024KB.

Programmable External Interrupts

Input Change Interrupts

Capture/Compare/PWM (CCP) modules

Master Synchronous Serial Port (MSSP) module ((SPI and I2C)

Enhanced Addressable USART module

10-bit Analog Digital Converter

Watchdog Timer

Brown-out Reset

(For details, please check the PIC32 datasheets from www.microchip.com)

Microprocessor / Microcontroller Terminology
Here are some terms and definitions that might help you when reading other material related to

microcontroller technology.

CISC - A complex instruction set computer (CISC, pronounced like "sisk") is a microprocessor instruction

set architecture (ISA) in which each instruction can execute several low-level operations, such as a load

from memory, an arithmetic operation, and a memory store, all in a single instruction. The term was

retroactively coined in contrast to reduced instruction set computer (RISC).

RISC - The acronym RISC (pronounced risk), for reduced instruction set computing, represents a CPU

design strategy emphasizing the insight that simplified instructions which "do less" may still provide for

higher performance if this simplicity can be utilized to make instructions execute very quickly. Many

proposals for a "precise" definition have been attempted; however, the term is being slowly replaced by

the more descriptive load-store architecture (see below). Well known RISC families include Alpha, ARC,

ARM, AVR, MIPS, PA-RISC, PIC, Power Architecture (including PowerPC), SuperH, and SPARC.

Harvard Architecture – computer architecture with physically separate storage and signal pathways for

instructions and data.

The Von Neumann Architecture - a processing unit and a single separate storage structure to hold both

instructions and data.

Phase Lock Loop (PLL) - use as a Frequency Multiplier. For users who wish to use a lower frequency

oscillator circuit or to clock the device up to its highest rated frequency from a crystal oscillator.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

11

The Tool Chain

What is Arduino IDE?

The Arduino IDE is a software tool that is

used to develop C and C++ code for

embedded development boards such as

Arduino and chipKIT boards we used in

this class. IDE is an acronym for Integrated

Development Environment. The Arduino

IDE is a combination of technologies that

allow editing of text “source code” files,

compilation of “source code” into

“machine code”, transferring the compiled

machine code from our development

machine to our target board and finally

interacting with our target board through

a serial terminal.

The technical process (as opposed to the

creative process) of creating a program

that runs on embedded hardware is as

follows:

1. Enter source code in a text editor.

2. Compile source code into object code.

3. Link object code together into executable machine code.

4. Upload machine code to the target platform.

5. Test machine code in target application.

The Arduino IDE with the chipKIT-core installed utilizes gcc open source C++ cross compilers that have

similar functionality that you would find in a C++ compiler for writing applications for a PC but utilizes

libraries specifically written for embedded hardware. Programming is done utilizing the C++ language

but automatically included libraries allow a beginner to ignore (at least in the beginning) the complexity

associated with C++ so that they can dive in and get started creating fast.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

12

Concepts in C Programming

Comments

Good programs will contain comments as necessary to make the code easier to interpret. It is important

for other programmers to understand the logic to make modifications to your code, but also for

yourself. You may have discovered in your past programming experience that if you go back to make

changes to a program that you've written a while back. It may be hard to follow quickly some of the

steps in the code.

A comment line can be included in C by bracketing all information that you don't want the compiler to

translate with slashes and asterisks.

Comments /* */

/*

Anything between the slash-star star-slash characters is a comment and ignored by the compiler

*/

Comments //

// Anything after the slash-slash is a comment until

// the end of the line. Comments are ignored by the compiler

Brackets (or Braces)

Braces { } mark the beginning and end of a section of code. All code in-between the braces can be taken

as at the same level of execution. Braces are often nested within “higher level” braces and these nested

braces are used to group a section of code associated with a loop or a decision making code. The

concept of braces and how they work will become more clear as the class progress and you see more

code examples.

Put yourself in someone else shoes (Claude Shannon)
Imagine a time long ago before the advent of computers, digital logic or even transistors. Of course, this

also means there are no electronic calculators. Relays, batteries switches and incandescent lights do

exist. With just these components you set out to build a machine that can add two numbers together

and display the result on a light. You have to use switches to represent your numbers inputs to the

machine, relays to do your math and lights to display the results. Having never seen such a machine

how would you use switches to represent numbers and how would you used relays to do math?

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

13

Week 2 – Number Systems, Output and Introduction to C

Links

Exponent Review
http://www.youtube.com/watch?v=joKpSP_-QFs

Number Systems
http://www.youtube.com/watch?v=NIvZx2zsF1A

Conversion Between Number Systems
http://www.youtube.com/watch?v=fX61osaZa5w

Class Goals (Lecture Name: Bits, Bytes and Data Types) (Functions and Loops)

This lecture should be about half review from digital, and half new

Counting and Number Systems

Review of Exponents

Let’s say you’re a mathematician and you spend your days multiplying numbers together, but not any

number, you have this particular obsession of multiplying the same number to itself over and over such

as 10 * 10 * 10 = 1,000 or 10 * 10 * 10 * 10 = 10,000.

After awhile of doing this you get tired of writing the same numbers over and over and because you’re a

good mathematician (which means your lazy and creative) you come up with a scheme so that you don’t

have to write so much. If you multiplying three tens together you decide to just write ten once then

raise the number of times you want to multiply ten together in the upper right hand corner of the ten.

You ponder this a bit you decide that this system will be really powerful and playing on the this you

decide to say that 10 * 10 * 10 becomes 103 (ten to the power of three). These are equivalent, and

again were lazy so rather than writing equivalent we just write:

10 * 10 * 10 = 103

After awhile of playing around with this notation we decide we can generalize it in the following way:

bn = b1 * b2 * b3 … *bn

And because we love math so much and we want to talk about our new notation with our math friends

we come up with clever names and decide that in bn that b will be called the base and n will be called

the exponent.

So we continue playing with our exponents and bases and find a sticky situation comes up… What if our

exponent is zero???

Well if our base is zero this is easy because we know zero times anything is zero:

03 = 0 * 0 * 0 = 0

http://www.youtube.com/watch?v=joKpSP_-QFs
http://www.youtube.com/watch?v=NIvZx2zsF1A
http://www.youtube.com/watch?v=fX61osaZa5w

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

14

But what about 100? Well this is zero 10’s but should we say this is zero? What if we do the following?

103 * 100?

Isn’t this just three tens multiplied by zero tens?

10 * 10 * 10 (and zero more tens?)

If we decide that 100 is zero then 10 * 10 * 10 * 0 is 0 not 100. It would probably be better to say 100 is

1 then 10 * 10 * 10 * 1 is 100. And indeed, there is a rule that goes something like bn * bm is b(n+m).

And we generalize that b0 is one where b is any number… Then what about 00? Should this be one?

Zero times anything is zero??? We’ll leave this as an open question since it is beyond the scope of this

class.

Exponents are essentially a short hand notation for multiplying the same number together over and

over in succession and you should not be intimidated by them.

Counting in Decimal

Powers of 10

123 = 100 + 20 + 3 = 1 * 100 + 2 * 10 + 3 * 1 = 1 * 102 + 2 * 101 + 3 * 100

Bits, Bytes and Nibbles

Review of a bit

Binary digit, has one of two possible values: 0 or 1

Review of a byte

1 byte is 8 bits written out left to right MSB (Most Significant Bit) to LSB (Lease Significant Bit). Example

1001 0001 (base 2) = 145 (base 10)

Nibbles (no joke)

1 nibble is 4 bits

1 byte is 2 nibbles, usually referred to as the high nibble and the low nibble. When writing binary

numbers, as above, a space is usually placed between nibbles to make the number easier to read by a

human.

Counting in Binary

How many values (not how high can we count) with one bit?

Two, 0 or 1.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

15

How many values (not high can we count) with two bits?

1: 0 0

2: 0 1

3: 1 0

4: 1 1

Two values for bit 1 and two values for bit 2. This can be calculated in the following manner:

This can be generalize as basedigits. The base is the base of the number system, in this case 2 and digits is

the number of digits we have.

22 = 2 * 2 = 4

How many values (not high can we count) with eight bits?

28 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 256

Hexadecimal (Hex for short)

Hexadecimal is the combination of the two words hex (meaning six) and decimal (meaning ten).

6 + 10 = 16

So in hex we have sixteen digits.

Count In Hex

In hex there are sixteen hexadecimal digits. We borrow the ten decimal digits we need six symbols to

represent all sixteen hex values. We use the first six characters from the alphabet for this: A, B, C, D, E

and F.

Recall when you count in decimal you start at zero and advance to nine using all ten digits before using

another column, so a count sequence would look like this:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…

The same is true in hexadecimal.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12…

Hex digit / nibble equivalency

Recall a nibble is four bits and that four bits can represent sixteen unique values and since a single hex

digit can be one of sixteen unique values then a hex digit is a nibble.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

16

Summary of Counting
Decimal

(base 10)

Hexadecimal

(base 16)

Binary

(base 2)

Octal

(base 8)

0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1

2 2 0 0 0 1 0 2

3 3 0 0 0 1 1 3

4 4 0 0 1 0 0 4

5 5 0 0 1 0 1 5

6 6 0 0 1 1 0 6

7 7 0 0 1 1 1 7

8 8 0 1 0 0 0 10

9 9 0 1 0 0 1 11

10 A 0 1 0 1 0 12

11 B 0 1 0 1 1 13

12 C 0 1 1 0 0 14

13 D 0 1 1 0 1 15

14 E 0 1 1 1 0 16

15 F 0 1 1 1 1 17

16 10 1 0 0 0 0 20

I/O PORTS

Our First Program (Blink)

Below is the typical blink example that ships with Arduino IDE. This program is pretty close to the

simplest useful program that will run using the Wiring programming abstraction. The program when run

will blink an LED attached to the development board at a rate of 0.5 Hz (one second on and one second

off). If we analyze the code we can see it does one other very important thing, in the setup() it sets the

pin attached to the LED to an output using the pinMode(). Most pins on a microcontroller have more

than one function and almost every pin can be configured as digital input or digital output.

This program was originally written for the Arduino Uno and we make this assumption based on PIN 13

being used. On the Arduino Uno (and the chipKIT Uno32) PIN 13 is connected to an LED mounted on the

development board.

void setup() {

 // initialize the digital pin as an output.

 // An LED connected on most Arduino boards:

 pinMode(PIN_LED1, OUTPUT);

}

void loop() {

 digitalWrite(PIN_LED1, HIGH); // set the LED on

 delay(1000); // wait for a second

 digitalWrite(PIN_LED1, LOW); // set the LED off

 delay(1000); // wait for a second

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

17

Review from Digital

To understand the electronics behind the ability of the I/O pin on a microcontroller to be

reprogrammable we first need to review some topics from digital electronic class. The 7400 series of

TTL ICs contain AND gates, OR gates, NOT gates, etc. The inputs and output functionality of most of

these device pins are fixed (as opposed to microcontrollers in which most of the pins can be

programmed to be either digital input or digital output on the fly).

D Flip Flops (review from Digital)

The D flip flop is a very simple one bit memory circuit that remembers the bit value when upon a clock

transition.

D Q

 CLK Q'

CLK D Q Q'

Non-Rising X Qprev Q'prev

0 0 1

1 1 0

Buffers (Newish)

A buffer is simply a device that re-amplifies a signal and in the case of a digital buffer you get out the

same logic level you put in. This circuit provides no enhanced ability to manipulate information, but

gives us the ability to transmit a signal over a longer distance or to drive a larger number of inputs than

would be possible with a single output.

A X

A X

0 0

1 1

Tri-State Buffers (New)

Tri-state buffers have two inputs and a single output that can be in one of three states: High, Low or Hi-Z

(high-Impedance). When the gate is in Hi-Z the gate is acting as if the output has been removed from

the circuit. In reality it is still connected, but the drain on the rest of the circuit is so low that it can be

neglected in simple cases.

B A C

0 X Hi-Z

1 0 0

1 1 1

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

18

I/O Pin Schematic of a Microcontroller

The input output functionality of the

microcontroller is achieved by a clever

arrangement of logic gates, flip flops and tri-state

buffers. Shown below is a simplified diagram for

a single bit of a microcontroller I/O port. The

DATA BUS is a bi-directional signal buss where

data travels to and from the microprocessor sub

module of the microcontroller. The data bus

connects to one of five locations within the I/O

pin control circuit, two are inputs and the other

three are outputs. The inputs are the D inputs to

the OUT and DIR latches. The three outputs

allow reading back the two latches and reading

the raw digital value off of the I/O pin itself.

Data Direction Register (pinMode)

When the pinMode command is issued this

causes a value to be written to the DIR latch that

chooses if the I/O pin is going to be input or

output. In the above diagram a logic 0 on the Q output of the DIR latch causes the port to become an

output port, where a logic 1 on the Q output of the DIR latch disconnects the OUT latch from the I/O PIN

allowing it to drive the input buffer that goes to the PIN FLIP FLOP. The state of the OUT latch can be

read by using the getPinMode() command.

I/O Register (digitalWrite / digitalRead)

As seen in the blink sketch example from above, once the pinMode() for a specific pin has been set the

output state of the pin can be set using the digitalWrite(). Equivalently, if we the pinMod() set the I/O

pin to be an input then the digialRead() can be used to read the logic state of the pin.

Questions

Is the value of a port volatile or non-volatile?

Concepts in C Programming

The nature of this class

In this class we are writing programs. An example of a programs are a word processor or spreadsheet or

a web browser. Programs are instructions to make a computer do useful things. Useful has a very broad

definition. A web browser lets you browse web pages on the internet and dose many other things. In

the first few labs of this class we have written programs to flash LED’s. Flashing an LED is a useful task, it

may not seem very useful but have you ever seen an LED flash itself?

In this class we will be using the C/C++ programming language to write our useful programs.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

19

Some History

Developed by K & R at AT&T Bell Labs for the purpose of developing operating systems. Designed to be

a low level language (close to assembly) to harness the power of the machine but simplify the job of

programming. (needs source)

The syntax used in C/C++ as well as other comes from this lineage of programming languages.

Alog60 …. BCPL -> B -> C -> C++, Objective C, Java

C Main Function

C is a functional language and the first function that gets called is main(). As used with the Wiring /

Arduino / chipKIT paradigm the main() function is hidden from the developer and instead replaced with

a setup() and a loop(). The setup() is called once at program start and the loop() function is called over

and over as long as the device is powered.

Keywords or Reserved Words

Definition: List of words reserved by the language (C in our case) that have a predefined meaning.

auto d entry return void d

break enum d short d volatile d

case extern d signed d while

char d float d sizeof

const d for static d

continue goto struct

default if switch

do int d typedef d

double d long d union d

else register d unsigned d

C Reserved Words

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

20

Variables and Data Types

Variables symbols that represent the memory of the computer. An example of a variable definition is:

int a; // define a variable called a that is of type int

You can think of a variable as a named box that can hold a value and the above line of code does two

things. One it names the box “a” and two it tells us how big we want the box to be, in this case the will

hold an int.

int a int a;

To continue with this analogy we need it would be nice if we can store something in our box. The C

operator that allows us to store a value in a variable is the single equal symbol “=”. The single equal

symbol is called assignment.

a = 10; // Store the value of 10 in the variable a

int a a = 10;

When a variable is defined a constraint is placed upon the variable as to the type of value that can be

represented by the variable. In the above example the type is 'int' which means a signed integer value.

By signed we mean that is can be either a value that is positive, negative or zero. Besides being signed

an integer value could also be unsigned meaning that is can only represent zero and positive values. For

review, an integer, is a whole number. That is to say is can be 1 or 2, but now 1.5 or 1 and 1/2. Another

type of numerical value is a float which can represent fractional values such as 1.5 or 3.14159.

The data type is important does a couple of things for us. It tells the complier how much memory to

reserve for the variable being defined. It also allows the compiler to do sanity check such that we do not

try to assign a floating point value to an integer value or something much worse.

A question that you should be asking right now is why are there so many different data types to

represents a numerical value? The answer is probably most likely originating in the fact that early

computer systems had very little memory so to represent a small number such as 15 you would need

less memory than would be needed to represent a large number such as 128.25651210242048. Indeed,

when we are developing with small microcontrollers memory too again is an issue we may be working

with kilobytes of RAM compared to gigabytes in a modern computer. For this reason, it is important to

choose a data type that will hold the largest and smallest number you want to represent but not one

larger to consume precious memory.

10

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

21

Summary

C Language stdint.h Bits Min Max

bit 1 0 1

signed char int8_t 8 -128 (-27) 127 (27-1)

char uint8_t 8 0 255 (28-1)

int int16_t 16 -32768 (-215) 32767 (215)

unsigned int uint16_t 16 0 65535 (216-1)

long int32_t 32 2,147,483,648 (-231) 2,147,483,647 (231-1)

unsigned
long

uint32_t 32 0 4,294,967,295 (232-1)

long long int64_t 64 9,223,372,036,854,775,808 (-263) 9,223,372,036,854,775,807 (263-1)

unsigned
long long

uint64_t 64 0 18,446,744,073,709,551,615 (264-1)

C Language Bits Value Range Precision

float N/A 32 1.2E-38 to 3.4E+38 6 decimal places

double N/A 64 2.3E-308 to 1.7E+308 15 decimal places

long double N/A 80 3.4E-4932 to 1.1E+4932 19 decimal places

How to Represent (Some) literals in C

Bits

0 or 1 for single bit

0b00001111 as a byte

Decimal Numbers

0 to 255 for an unsigned byte

Hexadecimal Numbers

0x00, 0xa5 (or 0xA5) or 0xFF

Octal Numbers (noted only as a warning)

0777 is not 777

Assignment

a = b + 1;

Value to the left of = symbol is called lvalue and must be a variable. Values to the right of the = symbol

can be variable, constants or literals.

Question: In this statement the microcontroller is reading from which values and writing which values?

#include

Includes a library in the C program

#include <system includes>

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

22

#include “local includes”

Assignments

Homework (Number Systems), Complete Lab 2

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

23

Week 3 – Input, Preprocessor, Loops, Decisions and Operators

Links

Number Systems Worksheet Solved

http://www.youtube.com/watch?v=-y-EyWOXOJA

Array’s in C

http://www.youtube.com/watch?v=wvrZpQWPvNg

Bitwise Operators in C

http://www.youtube.com/watch?v=5vJZ0-08FMY

http://www.youtube.com/watch?v=-y-EyWOXOJA
http://www.youtube.com/watch?v=wvrZpQWPvNg
http://www.youtube.com/watch?v=5vJZ0-08FMY

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

24

loops
We have seen in our sketches the setup and loop functions. Where

the setup() will run one time on power up (or reset) and the loop()

runs over and over in a loop after the setup() has run.

The loop() is very useful in that we do not typically want our

program to just end after one pass of running the code, we want it

to run over and over. In fact, looping is so powerful an idea that

there are specific C language constructs for looping beyond this

loop().

The loop consists of a loop type, a code-block of one or more statements (which is to run over and over

in a loop) and a condition that when met that allows the loop to exit. The condition for exit can be

checked either at the top of the loop (before the code-block has a chance to run) or at the bottom of the

loop (which allows the code-block to always run at least one time.

while(condition is true) { code-block }

The while loop does a conditional check at the top of the loop. If the condition is true then the program

will be allowed to enter the code-block. After each time the code-block is run the program jumps back

up to the top of the loop and checks the condition again. If the condition is still true the loop will run

again. The condition can be chosen such that the loop will never exit, for example (1==1) is always true,

so is (1) or (true). This can be useful, in fact this is how the function that calls loop() works. It can also

be a source of errors in the program if our condition is not set up correctly.

 uint8_t i;

 i = 0;

 while(i < 10) {

 // do something

 i++; // equivalency: i = i + 1;

 }

void setup() {

 // run once:

}

void loop() {

 // run repeatedly:

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

25

for(initial assignment; condition is true; incremental assignment) { code-block }

In addition to conditional checking the for loop has parameters for an initial assignment of an iterator

and an incremental assignment. The initial assignment is run one before anything else. Then the

condition is checked at the at the top of the loop just like a while. If the condition is true then the

program will be allowed to enter the code-block. After each time the code-block is run the incremental

assignment will be run then the program jumps back up to the top of the loop and checks the condition

again. If the condition is still true the loop will run again.

 uint8_t i;

 for(i = 0; i < 10; i++) {

 // do something

 }

for / while equivalency

The above two while and for examples are functionally equivalent. The C language could have gone

without one of the two, but they are both available so both should be understood.

do { code-block } while(condition is true);

The do-while loop does a conditional check at the bottom of the loop. The code-block will run at least

one time. After the code-bock has run if the condition is true then the program will be allowed jump

back to the top of the loop and run again.

 uint8_t i;

 i = 0;

 do {

 // do something

 i++; // equivalency: i = i + 1;

 } while(i < 10);

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

26

Demonstration / Group Exercise
The following programs are done as a group exercise in class. They help demonstrate the how to use

the Serial class and using variables to control looping in your programs.

Program 1 Serial Demonstration

This program is used to demonstrate that the messages sent over the serial port are lost until a serial

terminal is opened. Once this program has finished uploading and is running on your board, as quickly as

possible open the serial terminal. Notice that you will never see the message "Just opened the serial

port." This is because the message is sent so fast after the Fubarino serial port has been opened that it's

not possible to see the message. The five second delay after this message gives you just enough time to

open the serial terminal and see the next message "5 seconds went by."

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 Serial.println("Just opened the serial port.");

 delay(5000);

 Serial.println("5 seconds went by.");

 delay(1000);

}

void loop() {

 // put your main code here, to run repeatedly:

 Serial.println("looping.");

 delay(5000);

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

27

Count from 0 to 10

This next program adds a while loop to the above program in the setup() to demonstrate how to

automate counting from 0 to 10. The loop() has been cleared of any code. This results in the while loop

running until completion then the program essentially halts. The new components of the program are

the creation of a signed 8-bit variable named count:

int8_t count;

Initialization of the count variable to the value of 0.

count = 0;

The while loop that check to see if the variable count is less than or equal to the value 10.

while(count <= 10)

{

}

And the code inside the while loop (including the itterator). The itterator is the mechanism by which the

loop keeps track of how many times it has executed as well as the means by which detection of the

condition by which the loop will exit.

count = count + 1;

Here is the code:

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 int8_t count;

 count = 0;

 while(count <= 10)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 1;

 }

}

void loop() {

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

28

Write a program that out puts the numbers 0 to 20 then stops.

Each example from now on slightly modifies the above program. The changes to alter the above

program are highlighted and made bold to help the reader identify the changes necessary to achieve the

goals of the example. If you have not tried this code, you should run this code and make the changes for

each successive version for yourself.

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 int8_t count;

 count = 0;

 while(count <= 20)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 1;

 }

}

void loop() {

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

29

Write a program that out puts the numbers 0 to 20 and counts by 2's then stops.
void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 int8_t count;

 count = 0;

 while(count <= 20)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 2;

 }

}

void loop() {

}

Write a program that outputs the numbers 0 to 300 and counts by 10's then stops.
// First Try

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 int8_t count;

 count = 0;

 while(count <= 300)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 10;

 }

}

void loop() {

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

30

Write a program that outputs the numbers 0 to 300 and counts by 10's then stops.
// Second try

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 uint8_t count;

 count = 0;

 while(count <= 300)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 10;

 }

}

void loop() {

}

Write a program that outputs the numbers 0 to 300 and counts by 10's then stops.
// Third try

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 int16_t count;

 count = 0;

 while(count <= 300)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count + 10;

 }

}

void loop() {

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

31

Write a program that out puts the numbers 30 to 0 by -10.
void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 uint8_t count;

 count = 30;

 while(count >= 0)

 {

 Serial.print("The count is: ");

 Serial.println(count, DEC);

 delay(1000);

 count = count - 1;

 }

}

void loop() {

}

*Note: If your variable is unsigned (uint8_t) it will never stop counting.

Review

Variables and Memory

The memory of the microcontroller (RAM) can be use in our programs to hold values that can be used to

make decisions or to store data. How the memory is allocated for use is described by datatypes. The

datatypes we have seen so far are bit, char (unsigned and signed) and long. The lab also mentioned

arrays.

Class Goals
Preprocessor, headers, array’s, sizeof operator, inputs, buttons, loops, if-else, logical and bitwise

operators

Concepts in C Programming

Preprocessor Commands

Preprocessor commands are instructions in the a .c or .h file that a processed prior to code compilation,

hence the name preprocessor. Preprocessor commands are easily identified since they start with a ‘#’

(pound or sharp) character and do not require a ‘;’ (semicolon) at the end of the command.

#include (header files)

The #include command causes another (code) file to be merged into the current file at the point where

the statements has been added to the file. This allow for the reuse of libraries (of code). When

programming the use of libraries is a powerful feature that allows the creation of complex program very

quickly.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

32

There are two types of libraries that can be included, system or compiler libraries (provided by the

complier creators) or user libraries.

System libraries are included by the use of the < and > delimiters for the file-path. An example of a

system library we have already seen is the system.h file.

User libraries are included by the use of the “ and ” delimiters for the file-path.

#define

The #define command is used to create a reusable command that is often an abbreviated form of a

more complex instruction. The #define is often called a macro command. For example:

#define uint8_t unsigned char

Allows you to declare a variable as

uint8_t var;

rather than

unsigned char var;

The former being shorter and quicker to type than the latter.

Arrays

As we saw to create a single byte unsigned variable we can us the uint8_t macro to declare the x

variable as such:

 uint8_t x;

This reserves one byte of memory that can be used to store an unsigned 8-bit value. Recall that an

unsigned 8-bit value is in the range of 0 to 255 (2n-1, where n = 8).

Likewise if we want to allocate 5 bytes of memory we can use the following declarations:

 uint8_t x, xx, xxx, xxxx, xxxxx;

or

 uint8_t x[5];

The first declaration creates five variables that can store five different values. The second declaration is

called an array and dose then same as the first, with the difference that they can be addressed (or

indexed) using a second variable to select the position in the array.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

33

In the statement: uint8_t x[5], five memory locations are in the range of zero to four: x[0], x[1], x[2],

x[3], x[4]. An individual value in an array is called an element. In the C programming language array

elements always start at an index of zero.

The element x[5] is accessible, but is not valid since it is outside the range 0-4.

In addition to allocating the memory when a declaration is made, values can be assigned to them. The

example below creates a variable array containing five values that have been assigned to each position

in the array:

uint8_t x[5] = { 55, 75, 90, 40, 20};

This is equivalent to the following:

 uint8_t x[5];

 x[0] = 55;

 x[1] = 75;

 x[2] = 90;

 x[3] = 40;

 x[4] = 20;

When you define a new array with initialized values, if you leave the array size blank then the compiler

will calculate the proper size to make the array. The following example is the same as above but the size

of the array has been left blank.

 uint8_t x[] = { 55, 75, 90, 40, 20};

This is useful because you can add data without counting the number of elements.

sizeof()

The sizeof operator returns the number of bytes that a variable in the C language takes up in memory.

For an array it will return the number of elements in an array.

uint8_t count_x;

uint8_t count_y;

uint8_t x[] = { 55, 75, 90, 40, 20};

uint32_t y[] = { 55, 75, 90, 40, 20};

count_x = sizeof(x); // sizeof(x) returns 5 since a uint8_t takes 1 byte

count_y = sizeof(y); // sizeof(y) returns 20 since a uint32_t takes 4 bytes

The above example assigns the value of 5 to count_x. There are five one byte elements in the positions

0 to 4. The value of 20 is assigned to count_y since a uint32_t is 4 bytes long and there are 5 elements

(4 * 5 = 20)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

34

if, if-else and if-else if statements (decision statements)

“if, if-else and if-else if statements” provide the ability to alter program flow from its normal top to

bottom execution based on a “condition” and take the following form:

if
 if(condition is true)

 {

 // run this code if condition is true

 }

if-else statements
 if(condition is true)

 {

 // run this code if condition is true

 }

 else

 {

 // run this code if condition is false

 }

iff-else if-else
 if(condition 1 is true)

 {

 // run this code if condition 1 is true

 }

 else if(condition 2 is true)

 {

 // run this code if condition 2 is true

 }

 else if(condition N is true)

 {

 // run this code if condition N is true

 }

 else

 {

 // run this code if no condition is true

 }

Comparisons Operators

Name C Operator

Equal to ==

Not equal to !=

Less than <

Greater than >

Less than or equal to <=

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

35

Greater than or equal to >=

“Conditions” in C are statements that evaluate a truth value of either TRUE or FALSE and in the form of

A OP B, where A and B are values to be compared and OP is an operator from the chart above.

Condition Truth Values in C

Truth values in C are integers and therefore are actually represented in the computer as a numeric

value. A value that is FALSE is the integer value zero and a value that is TRUE is not zero (anything other

than zero). Most of the time, TRUE values are the integer one, but any non-zero integer is TRUE when

being evaluated as a condition.

This is why the following while statement never exits:

while(1)

{

 // code that is run forever…

}

The while loop executes as long as the condition is TRUE, since 1 is not zero and any non-zero value in C

evaluates to TRUE, this loop never exits.

Operators (Bitwise and Logical)

Operation Logical Bitwise

NOT ! ~

AND && &

OR || |

XOR NONE ^

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

36

Bitwise

Bitwise operators compare individual bits of a value and result in a new value of the individual

compared bits. This operation can be thought of as turning a truth table on its side.

// 0x6A 0110 1010 0110 1010 0110 1010

// 0x0F | 0000 1111 & 0000 1111 ^ 0000 1111 ~ 0000 1111

// ------------ ------------ ------------ ------------

// 0110 1111 0000 1010 0110 0101 1111 0000

 uint8_t a = 0x6a;

 uint8_t b = 0x0f;

 uint8_t c;

 c = a | b; // c <= 0x6f

 c = a & b; // c <= 0x0a

 c = a ^ b; // c <= 0x65

 c = ~b; // c <= 0xf0

Logical

Logical operators evaluate two truth values and result in a single truth value, for example “true || false”

will evaluate to “true”. In the example below remember that any non-zero value is considered true so

the following:

// 0x6A 0110 1010 0110 1010

// 0x0F || 0000 1111 && 0000 1111 ! 0000 1111

// ------------ ------------ ------------

// 1 1 0

Can be thought of as:

// 0x6A 1 1

// 0x0F || 1 && 1 ! 1

// ------------ ------------ ------------

// 1 1 0

 uint8_t a = 0x6a; // non-zero, therefore true

 uint8_t b = 0x0f; // non-zero, therefore true

 uint8_t c;

 c = a || b; // c <= 0x01 (true)

 c = a && b; // c <= 0x01 (true)

 c = !b; // c <= 0x00 (false)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

37

Shift operators

>> Shift bits to the right, << Shift bits to the left

Shift bit n times.

// 0x6A 0110 1010 0110 1010 0110 1010 0110 1010

// << 1 << 4 >> 1 >> 4

// ------------ ------------ ------------ ------------

// 1101 0100 1010 0000 0011 0101 0000 0110

 uint8_t a = 0x6a;

 uint8_t c;

 c = a << 1; // c <= 0xd4

 c = a << 4; // c <= 0xa0

 c = a >> 1; // c <= 0x35

 c = a >> 4; // c <= 0x03

a = a << 1; is equivalent to a <<= 1;

a = a >> 1; is equivalent to a >>= 1;

Shifting left is equivalent to multiplying by two and shifting right is equivalent to dividing by two.

Logical Values in C

In the C programming language all values are numbers, these numbers if evaluated as a logical

expression are either true or false. A value of 0 is false and a value of not zero is true. So...

0 is false

1 is true, but so is 2,3,4 or 5...

!0 is true

!1 is false, but so is !2, !3, !4 and !5... since 2,3,4 and 5 are true.

The reason why the statement while (1) never exits the loop is because 1 evaluates to true.

De-bounced Switch

If we create a logic switch out of a SPST switch and a pull up resistor. This crude circuit works fine for

some tasks but when we need to count button presses it has a weakness. The physics of a button is

such that as the button is pushed and the two conductive surfaces come into contact with each other

they tend to bounce at first. This could be caused by several different phenomena such as the spring

constants in the materials causing an oscillation or dirt on the contact surfaces causing momentary

make then break affects at the beginning of the push stroke before a large enough contact patch is

established for continuous current flow. In either case the result is the same, eradicate voltage swings

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

38

seen at the uC pin at the moment of contact. This can be seen by probing the uC pin with a digital

capture oscilloscope and pushing the button.

If our microcontroller runs at 80MHz and can process an instruction in one cycle then this means that

the execution time of a single instruction is 12.5ns. If we are trying to count button presses then a single

button press, as shown in the image above, could be counted several times. This is usually not desirable

and it completely unpredictable. This can be corrected for either in software by waiting several

microseconds between looking for presses, or more commonly by adding a capacitor to ground (when a

pull-up is used) or to Vcc (when a pull-down is used).

Using a de-bounced switch can be very important especially if we are using a button to trigger an

interrupt (to be discussed later) since not doing so could trigger multiple interrupts for a single button

press when we only desired one.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

39

Week 4 – Functions, Program Flow and Interrupts

Review
Bitwise operations as masks…

Example 1 Bitwise OR as mask (|)

// 0x6A 0110 1010 <- Value

// 0x0F | 0000 1111 <- Mask

// ------------

// 0x6F 0110 1111

High nibble passes through, low nibble masked to value one.

Example 2 Bitwise AND as mask (&)

// 0x6A 0110 1010 <- Value

// 0x0F & 0000 1111 <- Mask

// ------------

// 0x0A 0000 1010

High nibble masked to value 0, low nibble passes through.

Class Goals
Functions (Subroutines or Subprograms)

The Call Stack

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

40

Functions (Subroutines or Subprograms)

We have already seen in the programs we have created function definitions called setup and loop which

are used as entry points (where our program starts running) into our program.

void setup() {

 pinMode(13, OUTPUT); // Function we call

}

void loop() {

 digitalWrite(13, !digitalRead(13)); // Functions we call

 delay(1000);

}

We have also use some functions defined in libraries included with the Wiring API called pinMode(),

digitalWrite(), digitalRead(), delay() that provide functionality that we can leverage.

Finally, we have worked with functions definitions that are neither part of the Wiring API nor are they

required. Examples include nibbleToPins().

The C programming language is a functional programming language. That is to say that the programs we

write will be made up of lots of functions. All the functions we call will be called from one of our two

entry points in to our program: setup() or loop().

In other programming languages, what we call a function in C/C++ is often referred to as a subroutine or

a subprogram.

If we think of the term function in use outside of the C/C++ programing language, then you might think

of a “The function of a device.” Which is saying how the device works or what it is used for. You might

also think of a math function such as y = mx + b. A function in C/C++ is much like a math function in that

we can set some parameters and it can perform some operations on those parameters and then return

a value that can be assigned to a variable. But it is also different in that within the function we can

perform algorithms that manipulate data in a more complex form than simple math equations.

Functions

we define

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

41

The C/C++ Entry Point

As we have seen, in the Wiring API there are two entry points into our program called the setup and

loop. In the C/C++ programming languages there is a single entry point called main().

Every C/C++ program has a main function. When writing C/C++ code for the Wiring API (such as we do

in chipKIT or Arduino) the main() is hidden from us. If we look at the main() we see that it is quite simple

and just calls the setup() and loop() for us. The main function for chipKIT and Arduino looks something

like this (depending on the version of the IDE you are running:

int main(void)

{

 init();

 setup();

 while (1)

 {

 _scheduleTask();

 loop();

 if (serialEventRun) serialEventRun();

 }

 return 0;

}

As you can see the main() calls four additional functions: init(), setup(), _scheduleTask() and loop(). The

setup() and loop() functions are where the functions in our programs are called from. The init() and

_scheduleTask() functions are called to manage internal housekeeping for the specific device we are

using.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

42

Arduino IDE (C Language) Program Flow

A function that uses another function is said to

“call” the function. Each function that we call

from main in turn may call additional functions

itself. Below is a diagram showing the flow of a

program that calls several functions as well as

functions that call functions.

Metasyntactic Variables

To understand where the function names foo,

bar and baz came from. Search for the term

"metasyntactic variable" using the internet or

other preferred reference source.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

43

Function Prototypes

When we create a function in C, it is said that it must be declared prior to use. This literally means that

code for the function must be located above (before) the function that calls it. So a program that calls a

function foo must look like this:

void foo(void)

{

 // Some code

}

void main(void)

{

 foo();

}

But cannot look like this since main() calls foo() prior to

declaration:

void main(void)

{

 foo();

}

void foo(void)

{

 // Some code

}

It is possible to have the foo function exist after the main function by use of a function prototype. A

function prototype is a statement that tells the compiler that a function will exist and it has the

following form, but the definition is yet to come. The will allow functions to call it without it being

defined. Here is our second example again, corrected with a function prototype that is declared prior to

main().

void foo(void);

void main(void)

{

 foo();

}

void foo(void)

{

 // Some code

}

Notice that the function prototype looks the same as the first line of the function definition except that

it is terminated with a semicolon.

ADVANCED UNDERSTANDING

The reason why a function

must be declared prior to use

has to do with the efficiency in

which a C compiler converts a

C program into assembly (or

machine code). C Compliers

are one pass compliers. This

means that program is

converted from C to assembly

by reading each character in

our source file only once. So

when a function is called, if it

was not declared previously

the complier does not know

where to find it.

CONFUSION POINT

The words declare and define

sound very similar to a non-

programmer. But in

programming they have very

distinct meanings. To declare

a function is to say that it

exists, but not what it is. To

define it means to say that it

exists and this is what it is.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

44

Arduino IDE does not require the use of function prototypes and is able to do this because the IDE scans

your code and creates them for you prior to sending your code to the compiler. This feature was added

to the IDE to simplify creating programs for beginners but comes at a cost (nothing is for free). As

mentioned above, the purpose of function prototypes is let the complier know that a function exists and

will be seen later so that it can handle calls to functions prior to definition. Function prototype are

required by the compiler so Arduino IDE must create them for us. This means that the program must be

scanned and manipulated prior to compilation this scanning takes time and results in the files being sent

to the compiler not matching exactly what we see in our editor. The implication is we have to wait

longer for our program to compile and when we get error messages from the compiler it will indicate

that the error is on a different line of our code that it actually is.

Passing Parameter(s)

In addition to being able to call a function, we can all pass parameters (or arguments) to them, this

useful to allow our functions to have greater capabilities. The number of parameters we can pass to a

function is limited only to the amount of memory we have on our computer. The setup() and loop()

booth take zero parameters, All other functions we have seen so far take one or more parameters. A

function that requires zero parameters is declared by using the void keyword in the parentheses. The

delay() function takes a single argument and its function prototype looks like this:

void delay(unsigned long ms);

Recall that a unsigned long is a 32 bit unsigned value that we would call a uint32_t. This means that the

range of values that can be passed to the delay () is between 0ms and 4,294,967,296ms (or about 49.7

days).

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

45

If we wanted to create a function that take two arguments, that will flash an led pattern t times and has

a delay of ms milliseconds it may look something like this:

void lightshow(uint8_t t, uint32_t ms)

{

 while(t > 0)

 {

 digitalWrite(0,HIGH);

 delay(ms);

 digitalWrite(0,LOW);

 digitalWrite(1,HIGH);

 delay(ms);

 digitalWrite(1,LOW);

 digitalWrite(2,HIGH);

 delay(ms);

 digitalWrite(2,LOW);

 digitalWrite(3,HIGH);

 delay(ms);

 digitalWrite(3,LOW);

 t = t - 1;

 }

}

Return Value

In addition to being able to pass parameters to a function, it is also possible to get a single value back

from a function. This is done by changing the void keyword prior to the function name to a datatype

that we would like to return. The following example adds two uint32_t values together and returns the

result using the return keyword.

uint32_t add(uint32_t value1, uint32_t value2)

{

 return (value1 + value2);

}

The astute observer may have already come to the conclusion that it seems very limiting to only be able

to return a single value from a function, and indeed it is. When we get to discussion parsers and

pointers in future sections we will demonstrate how to get around these limitations.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

46

The Call Stack

Our programs exist in the memory of the computer as machine code. The size of the memory cell can

vary from chip to chip, but in each case each memory cell has a unique address. When a program is

running it starts at a low address and advances instruction by instruction. A register inside the

microcontroller called a program counter (or PC) keeps track of the next instruction to execute. When

we call a function we are tell the microprocessor to update the program counter to the location of the

new function, but if we want to get back to where we came from then we must keep track of the next

address after the point in the program where we make the call. This is called the return address. The

return address is stored in a reserved section of memory called the stack (or call stack). A stack is so

named because information is stored on it like trays in a cafeteria. The tray (or address) are stacked for

waiting customers. That is to say the first tray placed on the stack is the last tray removed or conversely

the last tray placed on the stack is the first removed. This storage abstraction is sometimes known as

LIFO (Last In First Out).

https://godbolt.org/

char add(char a, char b) {

 return a + b;

}

char call()

{

 add(3, 4);

}

Source: https://www.softwaretestinghelp.com/stack-in-cpp/

In addition to storing the return address, the stack also stores all the parameters that are to be passed

to our function. The return value is not typically stored on the stack. The return value would be stored

in either a register of the microcontroller or special memory reserved for return values and is dependent

on the compiler and microprocessor architecture in use.

https://godbolt.org/
https://www.softwaretestinghelp.com/stack-in-cpp/

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

47

Introduction to Interrupts

An interrupt is a hardware event that interrupts the typical flow of our program. An interrupt can be

triggered by many different peripherals in the microcontroller including but not limited to a change of

logic state on a pin or a value being received on a serial port.

When an interrupt occurs, our program is suspended and its state saved on the stack of the

microcontroller. The microcontroller then begins execution of the Interrupt Service Routine (ISR) that

"services" the interrupt that was triggered. The ISR responds to the triggered event and then exits

returning to normal program flow.

The ISR can be thought of as a function that is called not by our program but when the hardware even

occurs. In this class most ISR's that we experience have be written and are contained in the core code.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

48

Week 4 – Asynchronous Serial Communications

Class Goals
Serial Communications

Introduction

Asynchronous Serial Communications is a mouthful to the uninitiated, but it is such a common thing that

surrounds and enriches all of our lives on a daily basis that it can probably be unequivocally stated that it

is probably the most important thing to understand from the perspective of bettering one’s self by the

study of electronics technology.

To understand what is meant by Asynchronous Serial Communications and the details of its nature it is

best to tap into our prior knowledge and then step back a bit and look at some historical examples that

we are probably all familiar with.

Accessing Prior Knowledge

We should all intuitively know what is meant by communications. It is a fundamental to human nature

to communicate with each other from human being to human being. We do it instinctively at birth and

get better at it as we grow. On a daily basis, when we can’t be with people, we wish to communicate

with we use technology that has been developed over the millennia to fulfill this most human of needs.

History

So now that we have established the common ground general understanding of what is meant by

communications, we can review some historical technologies that we should all be familiar with. These

technologies by modern standards are passé, because they surround us and are fully integrated into our

daily lives which makes us numb to their presents, but each provide a significant step to understanding

Asynchronous Serial Communications and almost define it in terms of what we need to know to be able

to successfully use it when working with modern computer systems that utilize it.

Before we start, a bit of qualification must be given. The author of this article is not a historian and the

references and dates have only been cursorily checked, so statements may be a bit askew from

accepted historical fact but are given to paint a picture for the purpose of study for the subject at hand.

With that said the author believes the information is considered correct. Additionally the conclusions

may not be perfect either but are used to paint a general picture of trends in technology.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

49

30000 B.C. Cave Paintings

Based on widely accepted and scientifically verifiable

evidence, homo sapiens (humans) first appeared on the earth

around 200,000 B.C. and apparently, we as a species

wondered about for some time.

Then about 30,000 B.C. it is known that someone was

drawing pictures on cave walls in Europe (these were

probably drawn by Neanderthals and not homo sapiens) in

what is now France, clearly an attempt at some kind of communications. If not intentional, they left on

the wall of that cave a message that let us today know what was on their mind 30,000 years ago. If you

were to ask me, it looks like they were thinking about what to eat lunch.1

3000 B.C. Written Word

This leads us to the second development we need to

consider. The development of written language about 3000

B.C. Once this development was out of the bag, it allowed

ideas to be stored and transferred from place to place and

generation to generation like never before. Around 40 years

later the great pyramid of Giza was built, though maybe not a

direct affect of the written word, surly a contributor to the

success of this monument.2

2400 B.C. Postal Systems

Once there was written word, it only took about 600 years before the realization that there could be

great benefit of sending messages over long distances by means of a courier. Again taken for granted

today since we are inundated with bills and advertisements, prior to the development of postal systems

communications to be made in person, or by traveling to where the record was written (since they were

usual written on the side of a wall).3

1 Clottes, Jean. “Chauvet Cave (ca. 30,000 B.C.).” In Heilbrunn Timeline of Art History. New York: The Metropolitan

Museum of Art, 2000–. http://www.metmuseum.org/toah/hd/chav/hd_chav.htm (October 2002)

2 Mark, Joshua J. “Writing” https://www.ancient.eu/writing/ (April 2011)

3 Bellis, Mary. "History of Mail and the Postal System." ThoughtCo, Feb. 11, 2020, thoughtco.com/history-of-mail-

1992142.

https://www.ancient.eu/writing/

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

50

1439 A.D. Printing Press

The next technology we look at is the development of the

Gutenberg moveable type printing press in 1439.4 Although not

significantly important for understanding Asynchronous Serial

Communications it is certainly worth mentioning in the

development of technologies that create significant changes in the

way we communicate and forever change the world. Prior to the

creation of the moveable type printing press, the great literary

works of mankind had to be painstakingly copied by hand, a task

which was so time consuming it restricted access to these works to

those with the wealth to employee someone for the time it took to

do the transcription. Not to mention that hand transcription can be

riddled with errors.

The story of Uppercase and Lowercase

To appreciate how significant a change the movable type printing press was to our daily lives we

illustrate some terminology that was created for use with the printing press that has made it into

everyday language, while etymology is lost in its daily use. Prior to the creation of the movable type

printing press letter were either capital or not (capital). When the printing press went into common use

a wooden case was built to house the type. The case was divided into drawers of which the upper part

of the case (the uppercase) housed the capital letters and the lower part of the case (the lowercase)

housed all other letters. With the advent of digital printing, printing presses have all most all

disappeared except for in museums yet the terminology remains.

1819 A.D. The relationship between electricity and magnetism

In 1819 Hans Christian Ørsted unified electricity and magnetism through the observations that a current

flowing through a wire can cause a compass needle to deflect from its normal orientation.

1831 A.D. The electric motor

Michael Faraday (for whom we name the unit of measure of capacitance after) explored electro-

magnetism flushing out the nature of the force. In the process of doing so created the world's first

electric motor. Faraday along with James Clerk Maxwell and many other created the theories that we

utilize on a daily basis to build our modern society.

4 First movable type printing press in western culture. Other similar eastern technologies predate the Gutenberg

printing press. Something I learned while visiting the Gutenberg Museum in Mainz, Germany where Gutenberg

was borne and lived.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

51

1836 A.D. Mores Code

The printing press was surly a significant improvement in

communication technology which allowed old ideas to be

shared with vast audiences like the written word could never

be before. Postal systems improved over time and the means

to create written documents improved as well, but the written

word is great for studying the ideas of the past, even if they are

only a day old, they are still old. We as humans have a more

immediate need to communicate and communicate over long

distances and this need was first satisfied in 1836 with the

creation of Mores Code and the telegraph. Although the

concepts of Mores Code and the Telegraph are probably

familiar to all of us, they merit further study in the

understanding of Asynchronous Serial Communications since

the telegraph is the first device that can be said to utilize such

communications.

1886 A.D. Telephone

Alexander Gram Bell invented the telephone. This is noted here but reference but is slightly off the

track of our topic of study for the moment.

1910 A.D. Teletype

A teleprinter (teletypewriter, Teletype or TTY for

TeleTYpe/TeleTYpewriter) is a now largely obsolete

electromechanical typewriter that can be used to

communicate typed messages from point to point and point

to multipoint over a variety of communications channels that

range from a simple electrical connection, such as a pair of

wires, to the use of radio and microwave as the transmission

medium. - Wikipedia

The term TTY is still used in Linux/UNIX systems to describe

the command line connect to the operating system.

1973 A.D. Ethernet Invented

Multiple Inventors (Xerox PARC and Others).

1992 A.D. SMS Text Messaging

Multiple Inventors (Ericson Communications and Others).

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

52

A Trend to Note

The chart below graphs the events listed above on a logarithmic y-axis. The line is almost straight which

implies non-linear growth. The trend here is that the development of technology speeds up the

development of technology. It’s a positive feedback loop. The loop is throttled by the human capacity

to understand and synthesize new information; however, the limits of humanity are being pushed

further with the advent of machine learning.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

53

Where we find Serial Communications

The table below lists some places where serial communications can be found and the speeds and ranges

of these technologies.

Technology Speed Range

SPI MHz

I2C MHz

RS-232 KHz

USB (Universal Serial Bus) MHz-GHz

FireWire MHZ

MIDI

(Musical Insterment Digital Interface)
KHz

SATA (Serial ATA) MHz

Ethernet MHz-GHz

RS-423 KHz-MHz

RS-485 KHz-MHz

DMX512 control of theatrical lighting KHz

Fibre Channel

Connecting computers to mass storage
MHz-GHz

SONET and SDH

Telecommunication over optical fibers
MHz-GHz

T-1, E-1 and variants

Telecommunication over copper pairs
MHz

BlueTooth KHz

Zigbee KHz

Wireless USB KHz-MHz

WiFi KHz-MHz
Wireless

Mid Range

WiMax MHz
Wireless

Long Range

Short Range

(Device to Device)

Chip to Chip

(on a PCB)

Wireless

Short Range

Long Range (LAN)

Very Long Range

(WAN)

Asynchronous Serial Communications (Thirty Thousand Foot View)

Communications

The fundamental nature of computers and computation is that they are essentially information

manipulation and transportation devices. The transportation of information is the communications part

of the ASC (Asynchronous Serial Communications). Information manipulation takes place in the CPU.

Serial

Data in a computer is represented with bits. The transportation of bits takes place on conductors.

Conductors can be arranged in two different schemes. Parallel or Serial.

Parallel Communications

With parallel communications more than one conductor is used (in parallel) to move as many bits as

there are conductors per time splice.

Serial Communications

Serial communications achieves the same ends as parallel communications but instead of sending

multiple bits over multiple conductors, the bits are all sent on a single conductor. Typically only a single

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

54

bit can be represented in single moment. To send multiple bit time is divided into several moments and

a single bit at a time is sent one after another.

Tradeoffs

The tradeoff between serial and parallel is simply speed. For an equivalent transmission path, a parallel

communications channel will always outperform a serial communications channel by the number of

parallel conductors. So then serial communications are usually chosen for probably the common reason

any decision is made in electronics, it is chosen because a single channel will cost less than multiple

channels.

Asynchronous

Asynchronous means without synchronization. This implies

that there probably exists somewhere in the world

Synchronous Communications and indeed there does. A

communications channel that is Synchronous in nature has a

timing signal which makes it easier to detect signals, but the

synchronization requires another conductor for the clock

which again adds cost to a system. The ability to detect the

bits being transmitted is achieved by the sender and the

receiver agreeing ahead of time how long (in time) each bit

will be presented before changing to the next bit (this is the

asynchronous part).

Duplex

In order for communications of a message to take place it is

required for there to be at least one originator (sender) and

one destination (receiver), without which no communications

can take place. Special names have been given to represent

how communications networks are constructed so that

engineers and technicians can speak about configurations

without ambiguity while working.

Simplex

In simplex communications, information travels in a single direction at a time using a single

communications line.

ADVANCED UNDERSTANDING

Advanced communications systems

use a technique called clock recovery

that allows a local clock to be

synchronized to the transitions

coming from incoming data that can

be used as a clock signal. The

downside of this scheme is that

some data will be lost until the local

clock is synchronized. Also if long

periods of time elapse between

transmissions the local clock can

become unsynchronized, to get

around this short coming data is

encoded in such a way that the data

line is always changing and the ones

and zeros are represented as either a

phase shift or lack of phase shift.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

55

Half Duplex

In half duplex communications, information travels in two directions but only in

one direction at a time, single or dual communications lines can be used. This

communication duplex is similar to how walkie talkies work by using a single

carrier frequency to transmit voice communications. Only one transmitter is

possible at a time. This is not a great analogy since there can be multiple

receivers. When we use half duplex in a computer system there is one transmitter and one receiver.

Full Duplex

In full duplex communications, information travels in two directions

simultaneously, dual communications lines are required. Think of telephone

communications where both parties can talk and listen at the same time.

Broadcast

Though not typically associated with ASC but used is broadcasting. If you have a single sender and many

receivers this would be a broadcast type of topology.

RS-232

RS-232 is a voltage standard for digital ASC. RS-232 actually stands for Recommended Standard number

232 and is now maintained by the EIA (Electronica Industry Association) and sometimes called EIA-232.

You can think of RS-232 as a voltage standard used in communications systems similar to how you might

think of TTL (Transistor Transistor Logic) as a voltage standard used in digital electronics (Such as is used

in MtSAC ELEC 56 classes). For many years, RS-232 stood as the defacto standard for ASC. This standard

has only recently been displaced (starting around the year 2006) in computer systems by USB.

Communications to Fubarino’s and Arduino’s utilize the USB CDC (Communications Device Class) which

emulate the ideas from RS-232 over USB.

Necessary Conditions for RS-232 Communications

As mentioned previously, ASC relies on the sender and receiver to pre-agreed upon the parameters of

the communication ahead of time. If there is disagreement, this will likely result is the receiver

misinterpreting incoming data as gibberish. To make sure gibberish is not received some necessary

conditions need to be agreed upon before communications can occur.

Bit rate (Baud rate)

Bit rate is the parameter used to defined for the sender and receiver how time is to be divided when

using ASC. Bit rate calculations should look familiar to those with some electronics background (MtSAC

ELEC 50B) since the formulas are equivalent to frequency and period relationships.

 or bps (bit per second) = 1 / spb (seconds per bit) or the period

Bit rate is sometimes called baud rate but the two terms are slightly different. Bit rate refers to the

number of bits per second that can be transmitted, while the baud rate refers to bandwidth of the

communications channel. For example, if you are transmitting 10,000 bits per second, but the

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

56

communications channel only has a band width of 2,500 Hz, then a compression scheme has been used

to stuff more bits onto a single cycle of communications thus the channel has baud rate of 2,500. Some

methods used for stuffing more bits per cycle are known as frequency shift keying (FSK), phase shift

keying (PSK), amplitude shift keying (ASK), some combination of all three or yet possibly something

altogether different. Often the bit and rate and baud rate are the same and as a result the term baud

rate is often improperly used to describe the bit rate.

Mark and Space

The logic of bits is inverted in the RS-232 standard from what we are used to looking at. Normally for 5V

TTL or 3V LVTTL (Low Voltage Transistor Transistor Logic) a logic one bit is a positive voltage and a zero

bit is a voltage near zero. In RS-232 a one bit is a negative voltage and a zero bit is a positive voltage.

This can cause confusion so often the bit levels are talked about in terms of a mark (one) or a space

(zero) rather than high or low. The following chart summarizes:

Binary TTL LVTTL RS-232

Low FALSE Off Space 0 0V 0V +V

High TRUE On Mark 1 5V 3.3V -V

Logic

Remember for TTL, LVTTL and RS-232 as well, logic level are not specific voltages but ranges which might

look something like is shown in the table below. These ranges vary from manufacture to manufacture

and chip to chip. Its best to consult the datasheet for any given chip you are using to know for sure the

correct voltage range and to understand if the output of one chip can drive the input of another.

Logic Level Voltage Rang

0 0V – 0.8V

Undefined 0.8V -2.0V

1 2.0V – 5V

 Framing (Start bit, Stop bits and bit ordering)

When data is transmitted over an ASC RS-232 line it is sent a bit at a time (usually in groups of eight).

These bits are framed with a start and stop bits. There is typically always one start bit, but the number

of stop bits can be one or greater. Common values for stop bits are 1, 1.5 and 2. The start bit is always

low (space) and the stop bits are always high (mark). When data is not being transmitted the line is said

to be idle. An idle line is at the mark (logic 1) level.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

57

Bit Order

Data is transmitted least significant bit (LSB) to most significant bit (MSB) vs time. Below are several

examples of an ASC data transmission.

Figure 1 – RS-232 asynchronous serial communication frame (0x4B) From Wikipedia

If you read the bits off the above chart from left to right, we see the bit sequence (remember logic 0 is a

positive voltage):

0 1 1 0 1 0 0 1 0 1

The first bit and last bit are the framing bits start and stop. If we remove the framing bit, we are left

with:

0 1 1 0 1 0 0 1 0 1

To interpret these values, we need to reverse their order from LSB to MSB to MSB to LSB:

1 1 0 1 0 0 1 0

0 1 0 0 1 1 0 1

0x4B (ASCII character ‘K’)

0 1 0 0 0 0 0 1 0 1

idel start lsb msb stop idel

Transmission of the character 'A' (ASCII 0x41)

lsn (0x1) msn (0x4)

Figure 2 – Logic Level diagram Idle is spelled incorrectly (idel) in this graphic

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

58

Error

The nature of ASC means that the receiver and the transmitter must agree ahead of time on the bit rate

of transmission. The bit rate is generated by an on the on-board clock. For the boards used in this class

the clock used is derived from the onboard crystal oscillator for the microcontroller. Because sender

and receiver have different clocks and clocks have a frequency a tolerance (or an operating band of

frequencies) the clock frequency between the sender and receiver will not be the same. The difference

between the sender clock and the receiver clock is call the error. The error from the clock sources

means that there will be slight differences in the width of a bit from one system to another. When

designing a system must be verified that error between clock sources is within acceptable limits in order

for reliable communications to occur.

If we start with a frame that has 10 bits and there is a 10% error in clock speeds (and thus a 10% error

for the length of time the receiver expect a bit to be vs what it actually is) this will mean that by the time

the 10th bit is transmitted that the error will have added up to 100% (The error adds with each bit

transmitted to 10% x 10 bits = 100%). So clearly 10% error is unacceptable. An error of 1% per bit will

mean a total error of 10% per 10-bit frame, which will probably work fine, but the lower the error the

better. Because the start bit indicates the beginning of a frame the clock of the receiver is

resynchronized with the start of each new frame and the error is zero at this point.

Error Per Bit% = (Sender Bit Period – Receiver Bit Period) / Receiver Bit Period ∙ 100%

Break

Though not commonly used, it is important to understand the break signal.

A break is generated by holding the transmit line of the ASC system at space (logic low) for longer than

the frame length. This allows the receiver to detect 257 different values (256 from the 8 data bits and 1

for the break). This could be useful if you are trying to send 8-bit binary data and need some way to

signal the receiver that some exceptional condition has occurred.

Parity Bit

Another not often used parameter of ASC is called a parity bit. Early systems used parity bits as a

method of detecting errors in communications. The way a parity bit works is for an 8-bit data word a 9th

parity bit is added to the frame. The parity bit is set so that the count the one bits being transmitted

(including the parity bit) and result in a sum that will be even (known as even parity) or an odd (known

as odd parity). For example if odd parity is selected and transmission of the data 0b 1001 0110 is to

occur, there are four one’s, four is an even number so the parity bit will be set to one (0b 1001 0110 1)

making count of one bits equal to five, which is an odd number. The same number transmitted using

even parity would have the parity bit set to zero (0b 1001 0110 0). Parity bit is not used much anymore

because it just is not very good at catching errors and there are much better mechanisms have been

developed that require less communication bandwidth. One such better method is known as a CRC

(Cyclic Redundancy Check). A CRC works by using a register to accumulate value that generated by

passing the data to be transmitted through the CRC algorithm on the sender’s computer. Then the

receiver does the same with the received data. The sender then sends is CRC value it calculated and the

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

59

receiver compares its received CRC value to the its own calculated value. If CRC values match the data is

assumed good. If not the receiver request the same data to be transmitted again.

PC Communications Notation

MS-DOS and Windows computers made popular a notation for representing how an asynchronous

communications port is set up. The notation looks like this:

COM1: 9600,8,N,1

COM1 indicates the physical PC COMmunications port.

9600 is the bits per second.

8 is the data bits per frame.

N is the parity (N=None, E=Even, O=Odd).

1 is the number of stop bits in the frame.

Each frame always has 1 start bit.

Representing Information as Digital Data

ASCII (American Standard Code for Information Interchange)

ASCII is a seven bit code that is used to represent alpha numeric data as well as some special characters

and is extremely prevalent in computing probably for no other reason than due to the length of time it

has been around.

The following chart can be used to lookup an ASCII character from a hexadecimal ASCII code or visa

versa.

To find the ASCII code for the ASCII character ‘A’ (capital A), first find the character ‘A’ in the chart then

combine first the hex nibble to the left chart followed by the hex nibble from the top of the chart. The

ASCII code for ‘A’ is 0x41. Conversely, if we have the ASCII Code 0x38 we use the high nibble (3) to find

the row on the chart and the low nibble (8) to find the column. The ASCII character for the ASCII code

0x38 is the character ‘8’.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

60

Some of the characters in the ASCII chart are known as “whitespace” or non-printable because they do

not render to a visible character. Examples of these are SP (Space) and HT (Horizontal Tab). A list of

non-printable characters and their descriptions are shown below.

Symbol Description Symbol Description

NULL Null character DC1 Device Control 1

SOH Start Of Header DC2 Device Control 2

STX Start of Text DC3 Device Control 3

ETX End of Text DC4 Device Control 4

EOT End Of Transmission NAK Negitive Acknowledge

ENQ Enquiry SYN Synchronous Idle

ACK Acknowledge ETB End of Transmission Block

BEL Bell (Ring a bell) CAN Cancel

BS Backspace EM End of Medium

HT Horizontal Tab (Tab) SUB Substitute

LF Linefeed ESC Escape

VT Vertical Tab FS File Seperator

FF Formfeed GS Group Seperator

CR Carriage Return (Enter) RS Record Seperator

SO Shift Out US Unit Seperator

SI Shift In SP Space (Space Bar)

DLE Data Line Escape DEL Delete

Terminology

DTE

Data Terminal Equipment (The Computer)

DCE

Data Communications Equipments (The Modem)

Configuring the UART of a chipKIT or Arduino board for ASC

The complexity of configuration of the UART for chipKIT or Arduino board is taken care of by the core

libraries of the system. All that we need do is specify the bit rate by using the Serial.begin(speed)

function. This is typically called from the setup() but need not be called there alone.

If your target board has more than one serial UART additional serial ports can be configured using the

SerialX.begin(speed) command where X is a number that represents the serial port on the board.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

61

Demo

Iterating through a string
void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 delay(3000);

 char class_name[] = "MtSAC ELEC 74";

 uint8_t i;

 i = 0;

 while (i < sizeof(class_name)) {

 Serial.print("class_name[");

 Serial.print(i, DEC);

 Serial.print("] = ");

 Serial.print(class_name[i], DEC);

 Serial.print(",");

 Serial.print(class_name[i]);

 Serial.println(".");

 delay(1000);

 i = i + 1;

 }

 Serial.println(".");

 Serial.println(".");

}

void loop() {}

View the output in HEX by changing this:

 Serial.println(class_name [i], DEC);

to this:

 Serial.println(class_name [i], HEX);

To see one past the end of the string change the will condition to this:

 while(i <= sizeof(class_name))

The end of a string is marked by the NULL character. The NULL is the numerical value zero. We can use

the fact the strings are terminated with a NULL to look for the end of the string by changing the while

loop to the following:

 while(class_name [i] != 0)

Next we pull the while loop out of the setup and create an examine function. The program passes the

string from the setup() to the examine() by pointer. Accessing an individual element of a string is done

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

62

using the index brackets '[' and ']'. To access the address in memory, and hence the entire string, you

just need to drop the index brackets. The complete code is given below:

void examine(char *p)

{

 int8_t i;

 i = 0;

 while(p[i] != 0) {

 Serial.print("p[");

 Serial.print(i, DEC);

 Serial.print("] = ");

 Serial.print(p[i], HEX);

 Serial.print(",");

 Serial.print(p[i]);

 Serial.println(".");

 delay(500);

 i = i + 1;

 }

}

void setup() {

 Serial.begin(115200);

 delay(3000);

 char class_name[] = "MtSAC";

 examine(class_name);

}

void loop() {

 // put your main code here, to run repeatedly:

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

63

If you want to reverse the string you need to know how long it is and start by printing the last character

first. In order to do this you need to find out how long the string is and print it last character first. You

can calculate the length of a string with a function like this:

int32_t length(char *p)

{

 int32_t i = 0;

 while(p[i] != 0) {

 i = i + 1;

 }

 return i;

}

You would use it like this:

void examine(char *p)

{

 uint8_t i;

 i = length(p);

 while(i >= 0) {

 Serial.print("p[");

 Serial.print(i, DEC);

 Serial.print("] = ");

 Serial.print(p[i], HEX);

 Serial.print(",");

 Serial.print(p[i]);

 Serial.println(".");

 delay(500);

 i = i - 1;

 }

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

64

There is a built in function called strlen() that does the same thing as length above. We can use this like

this:

void examine(char *p)

{

 uint8_t i;

 i = strlen(p);

 while(i >= 0) {

 Serial.print("p[");

 Serial.print(i, DEC);

 Serial.print("] = ");

 Serial.print(p[i], HEX);

 Serial.print(",");

 Serial.print(p[i]);

 Serial.println(".");

 delay(500);

 i = i - 1;

 }

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

65

Fubarino SD:

Fubarino Mini:
Serial: USB

Serial0 Pins TX1/RX1 or 17/18

Serial1 Pins TX2/RX2 or 26/25

Category Serial Port Functions

Initialization Serial.begin(bps); // Where bps = bits per second (for UART’s)

Input Serial.available(); // Returns the number of bytes available to read 0=False; 1+ True

Serial.read(); // Read a single byte of data

Output Serial.write(c); // Write a single byte of data

Serial.print(p); // Formatted data output

Serial.println(p); // Formatted data output + newline characters “\r\n”

https://www.arduino.cc/reference/en/language/functions/communication/serial/

https://www.arduino.cc/reference/en/language/functions/communication/serial/

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

66

Week 5/6 – Pointers, String Functions

Review
From: https://www.arduino.cc/reference/en/language/functions/communication/serial/

Serial.begin()

Description

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with Serial

Monitor, make sure to use one of the baud rates listed in the menu at the bottom right corner of its

screen. You can, however, specify other rates - for example, to communicate over pins 0 and 1 with a

component that requires a particular baud rate.

An optional second argument configures the data, parity, and stop bits. The default is 8 data bits, no

parity, one stop bit.

Syntax

Serial.begin(speed)

Serial.begin(speed, config)

Parameters

Serial: serial port object. See the list of available serial ports for each board on the Serial main page.

speed: in bits per second (baud) - long

config: sets data, parity, and stop bits. The default value is: SERIAL_8N1

Serial.available() - Input

Description

Get the number of bytes (characters) available for reading from the serial port. This is data that’s already

arrived and stored in the serial receive buffer (which holds 64 bytes).

Example:

if(Serial.availble() > 0)

{

 // We received some data

}

https://www.arduino.cc/reference/en/language/functions/communication/serial/

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

67

Serial.read() - Input

Description

Reads incoming serial data.

Example:

if(Serial.availble() > 0)

{

 char c = Serial.Read();

}

Serial.print() - Output

Description

Prints data to the serial port as human-readable ASCII text. This command can take many forms.

Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII digits,

defaulting to two decimal places. Bytes are sent as a single character. Characters and strings are sent as

is. For example-

Serial.print(78) gives "78"

Serial.print(1.23456) gives "1.23"

Serial.print('N') gives "N"

Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted values are BIN(binary, or

base 2), OCT(octal, or base 8), DEC(decimal, or base 10), HEX(hexadecimal, or base 16). For floating

point numbers, this parameter specifies the number of decimal places to use. For example-

Serial.print(78, BIN) gives "1001110"

Serial.print(78, OCT) gives "116"

Serial.print(78, DEC) gives "78"

Serial.print(78, HEX) gives "4E"

Serial.print(1.23456, 0) gives "1"

Serial.print(1.23456, 2) gives "1.23"

Serial.print(1.23456, 4) gives "1.2346"

You can pass flash-memory based strings to Serial.print() by wrapping them with F(). For example:

Serial.print(F(“Hello World”))

To send data without conversion to its representation as characters, use Serial.write().

Syntax

Serial.print(val)

Serial.print(val, format)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

68

Parameters

Serial: serial port object. See the list of available serial ports for each board on the Serial main page.

val: the value to print - any data type

Returns

size_t: print() returns the number of bytes written, though reading that number is optional.

Serial.println() - Output

Description

Same as Serial.print() but adds a newline at the end of what is being printed.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

69

Class Goals
In order to process the characters being received from the USART in an interrupt, we will need to

develop some more C language skills and gain some further insight into how memory is use in the C

programming language.

The big picture: When a character is received by the hardware that is associated with a Serial class the

PIC32 will generate an interrupt. In the ISR (Interrupt Service Routine) the received character is put into

a buffer. A buffer is just a block of memory that will hold these received characters until they can be

processed by our main loop. Then when the main loop has time to process the data that has come in

through the USART it can act upon it.

Scope

The term “scope” is use often in programing to consider when a variable can be accessed by a certain

piece of code. It is important to understand the scope of a variable so that you know if the data it stores

can be manipulate by a specific piece of code.

Memory and Auto Variables

When we create an auto variable in the C programming

language memory in our computer is allocated. Allocation is the

act of deciding that this memory is used for a specific purpose,

namely to store data for our newly created variable. When we

are done with memory it is de-allocated, this happens

automatically in C. Auto variables are in scope within the

function where they are defined.

Global Variables

Global variables are variables that are accessible by all functions

(hence the name global) and typically allocated on the heap

rather than on the stack. Auto variables are rather temporary,

but since globals stick around the entire time the program is

running the heap is a better place for them since they would

just take up space on the stack that is never released. Global

variable are in scope everywhere within a program but they can

be masked by an auto variable with the same name (demo to

follow).

To declare a global, you make the declaration outside of a

function and usually at the top of your c code file. The

declaration is just like any other you have seen, just outside of a

function. Here is an example of a program with a global variable:

ADVANCED UNDERSTANDING

All variables up until this point have

been auto variables. That is to say

memory for them is allocated

automatically when we declared.

These variables are allocated on the

stack of the microcontroller. Stack

size is often limited and there is

another place we can allocate

memory, this is called the heap. To

allocate memory on the heap a

command called alloc is used that

will return a pointer to a chunk of

the heap. There is no physical

difference between the stack and the

heap, they are just ideas that are

used for organizing memory in the

computer. There is, however, a

difference in how the memory is

organized.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

70

// Global Variables

uint8_t global;

// Program

void setup()

{

 Serial.begin(115200);

 delay(3000);

 uint8_t local;

 local = 1;

 global = local;

 Serial.print("before foo: ");

 Serial.print(local, DEC);

 Serial.print(", ");

 Serial.print(global, DEC);

 Serial.println(".");

 foo();

 Serial.print("after foo: ");

 Serial.print(local, DEC);

 Serial.print(", ");

 Serial.print(global, DEC);

 Serial.println(".");

 Serial.println("This is a bunch of data.");

}

void foo(void)

{

 uint8_t local;

 local = 2;

 global = local;

}

void loop() {}

Notice that variable global is accessible in both setup() and foo() without passing it to the function. It is

generally not a good practice of using a global variable since issues arise when you have a global and a

local variable that have the same name, in particular, the local variable has precedence over the global

and the global becomes inaccessible. Also, when you’re looking at a more complex program it may be

difficult to tell if you're looking at a global or a local variable.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

71

// Global Variables

uint8_t ambiguous = 1;

// Program

void setup()

{

 Serial.begin(115200);

 delay(3000);

 uint8_t ambiguous;

 ambiguous = 2; // global variable masked by local

 Serial.print("ambiguous: ");

 Serial.print(ambiguous, DEC);

 Serial.println(".");

 foo();

 Serial.println("This is a bunch of data.");

}

void foo()

{

 Serial.print("ambiguous: ");

 Serial.print(ambiguous, DEC);

 Serial.println(".");

}

void loop() {}

So if globals are so bad, then why tell us about them? If you need to get information into or out of an

interrupt you must use a global variable since you can’t pass or return information to or from an

interrupt.

So our buffer to store incoming characters from the serial port interrupt will be stored in a global

variable.

Volatile Data Types

In order to use our global variables in both an interrupt and out of the interrupt we must declare them

as volatile. The volatile keyword tells the C compiler that the memory could be operated on by outside

functions and to make no assumptions about what values may be in the memory.

How can a C complier make assumptions about what is in the memory of the computer? When a

program is compiled data in memory may be copied into memory inside the microprocessor (typically

called and accumulator or arithmetic register), if the compiler has copied a memory value into the

accumulator and that memory changes by an interrupt then it may be different the next time it needs

the value, so rather than referring to the copy in the accumulator it must re-read the value from

memory.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

72

Static Data Types

Declaring a local variable as static puts it on the heap and makes it so that it will retain its value between

calls to the function. The variable only has scope within the function where it is declared.

Scope of a Variable

In programming, we say a variable is in scope if it is accessible in a certain area of the program. Global

variable have global scope and local variable are only in scope within the function they are declared in.

Character (ASCII) Values

We know that in the microcontroller all data is binary. But we have seen that when we have an 8-bit

data type we can either type directly in binary or have the complier convert numerical values to binary

for us. So the following lines of code are all equivalent and all store 00110101 into the variable x.

x = 0b00110101; // binary

x = 0x35; // hexadecimal

x = 065; // octal

x = 53; // decimal

In addition to these convenient complier features, the complier will also convert and ASCII character to

its numerical value for us. This is done by encapsulating the ASCII character we want the numerical

value of in single quotes as such:

x = '5' // ASCII 5 is 0x35 in hex

There exist some special escaped ASCII characters that cannot be represented in t text editor. These

characters are often called non-printable or whitespace characters. In order to use these characters in

your C programs an escape character followed by a printable character are used to represent these

symbols. For example:

x = '\t' // ASCII <TAB> is 9 or 0x09 in hex

x = '\n' // ASCII <LF> is 10 or 0x0A in hex

x = '\r' // ASCII <CR> is 13 or 0x0D in hex

x = '\0' // ASCII <NULL> is 0 or 0x00 in hex

Even though two printable characters are used only a single ASCII value is stored in memory.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

73

Strings Arrays

We have seen that we can make an array of continuous memory that is addressable with an index such

as this:

uint8_t x[] = { 0x50, 0x49, 0x43, 0x20, 0x33, 0x32, 0x00 };

It is also possible to store ASCII values like this:

uint8_t x[] = { 'P','I','C',' ','3','2',0 };

In C there is a concept called a string array that allows us to

more efficiently initialize the variable x to a name. This looks

like this:

uint8_t x[] = "PIC 32";

All three of these statements do exactly the same thing. They allocates seven bytes, one for each letter

in the string “PIC 32” and the seventh for the value zero that is stored after the ‘2’ in memory. When

working with strings the final zero is called the null terminator.

The array is placed in memory it looks like this:

x Array Offset ASCII Value C char Value Hex Value

x[0] P 'P' 0x50

x[1] I 'I' 0x49

x[2] C 'C' 0x43

x[3] <SPACE> ' ' 0x20

x[4] 3 '3' 0x33

x[5] 2 '2' 0x32

x[6] <NULL> '\0' 0x00

Each letter in the string is addressable by using the index. Where x[0] is ‘P’ and x[4] is ‘3’ and x[6] is 0.

Null Terminated Strings

The reason the last value in a string is null is so that if we are looking through memory we don’t have to

know how many bytes (or characters) are stored in our string but rather just look for the null character.

Allocating strings (additional examples)

Most of the time in C, you will see strings using the char data type, recall that we have been using

uint8_t, but most people are not as smart as us and use char’s.

// allocate 7 bytes indexed from 0 to 6

// where string[0]= '1', string[5]= '\r' and string[6]=0 (or '\0').

char string1[] ="12345\r";

// allocates 10 bytes indexed from 0 to 9.

// values undefined (un-initialized)

char string2[10];

MEMORY RECALL

The datatype uint8_t is just a macro

that is used to represent the C type

char.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

74

Pointers

A pointer is a special type of variable in the C programming

language that holds the address of a memory location. Recall that

the PIC32 has 32 bit memory range of 0x00000000 through

0xFFFFFFFF. This would mean that a pointer needs to store 32 bit

value for this processor. In this book we will assume pointers are

32 bits in length.

A pointer can point to any memory location but are typically used

to point to very specific things such as variable or a function.

Although pointers to functions are very useful and allow for very

dynamic and interesting code, in this book, we are just going to

explore pointers to variables.

Every memory location in the computer has a physical numerical

address. Very detailed information regarding the mapping

memory is provided in the “Memory Organization” section (3) of

the PIC32 datasheet.

An interesting thing to note is that the special function registers

(SFRs) are mapped into the data memory of the PIC. When you look at “Memory Organization” section

of the datasheet you can the physical address for each of the SFRs for the PIC.

Declaring Pointers to Variables in C

Recall that we can simply create a variable called v that holds an unsigned eight bit value by doing this:

uint8_t v;

To create a "pointer" variable that stores an address to an unsigned eight bit value called pv we do this:

uint8_t* pv;

The difference between the first and second declaration is the addition of the '*' character when

creating a the variable. When used here the '*' is what makes this variable a pointer and we would say

that pv is a " uint8_t pointer".

Wait a minute here, I thought you said address need to be 32-bits on a PIC32 but you made pv a uint8_t

pointer. Well, actually, pv does store a 32 bit address. And yes, all pointers on the PIC32 are 32 bits.

The type " uint8_t*" just means that we intend to use the address stored in pv to point to the memory

location of a variable that is of type uint8_t.

ADVANCED UNDERSTANDING

The size of a pointer in for a PIC is

configurable by issuing commands to

the compiler and linker. This is done

for two reasons. Some PIC's have

more than 64K of program space and

thus need a larger than 16 bit

pointer. But this means we will use

much more RAM for our pointers.

And since memory in a PIC is so

limited if we don't need to use this

extra RAM we make our pointers

smaller. The details of how this

works can be found in your compiler

manuals. In this book we assume

addresses are 16 bits.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

75

Obtain a Variables Address

To get the address of a non-pointer variable prepend the non-

poniter variable with the ampersand character as such:

uint8_t v;

uint8_t* pv;

v = 1; // Assign the number 1 to v

pv = &v; // Assign the address of v to the

 // pointer pv (pv now points to v)

Dereference a Pointer

A pointer is a variable that lets you reference another variable by

its address. To obtaining the value that is pointed to by this

variable you need to dereferencing the pointer. To dereference a

pointer the pointer variable is prepended with an asterisk.

uint8_t v;

uint8_t* pv;

v = 1; // Assign 1 to v

pv = &v; // Assign the address of v to the

 // pointer pv (pv now points to v)

*pv = *pv + 1; // Add 1 to the value pointed to

 // by pv then store the result

 // back into the memory location

 // pointed to by pv (v = v + 1)

Using Pointers in C

So how do we use pointers? Let look at the following code:

uint8_t v;

uint8_t w;

uint8_t* pv;

uint8_t* pw;

v = 1; // Assign 1 to v

w = v; // Assign the value of v to w (w now equals 1)

pv = &v; // Assign the address of v to the pointer pv (pv now points to v)

w = *pv; // Assign the value pointed to by pv to w (pv point to v to w = 1)

pw = pv; // Assign the value of pv to pw (pw now also points to V)

*pv = *pv + 1; // increment the values pointed to by pv (v = v + 1)

v = *pw; // Assign the value pointed to by pw to v (pw points to v so v = v)

w = *pw; // Assign the value pointed to by pw to w (pw points to v so w = v)

(*pw)++; // Post increment the value pointed to by pw (v++)

pw++;; // Post increment pw (pw now points to w)

*pw = *pv; // Assign the value pointed to by pv to the value pointed to by pw

 // (w = v)

CONFUSION POINT

Dereferencing a pointer can be a bit

confusing since the pointer itself is

declared using the asterisk. The

confusion comes from the asterisk

having different meanings. When

declaring the pointer it indicates that

the variable is a pointer. When used

in code, it indicates that the pointer

is to be used a variable and not as an

address.

CONFUSION POINT

When we speak of pointers in C

there are two ideas that get

intermingled. A pointer can be:

1. An address of a memory location.

2. A variable that holds an address

to a memory location.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

76

Breakdown

Pointers can point to any variable type. Remember a type indicates how much memory is allocated a

how its organized. So, uint8_t is a type that stored 8-bit and uint16_t is a type that stores 16-bits.

TYPE v;
v => evaluates to a value stored in memory of type TYPE
&v => evaluates to the memory address where the value v is stored

TYPE *pv;
*pv => evaluates to a value stored in memory pointed to by pv of type TYPE
pv => evaluates to a memory address where a value is stored (be careful, this is only true if you
point it to something first)

Common Pit Fall with Pointers

The following example shows a common pit fall for those new to pointers. In this example the variable p

is created but not initialized to point to any particular memory location. Then p is dereferenced and an

attempt to store the value 32 in the memory location pointed to by p. Since we don't know where p

points to, this could be disastrous for our program due to potentially overwriting something important

we don't want to be overwritten.

void setup(void)

{

 uint8_t *p;

 *p = 32; // opps, where does p point to??

}

Another common pitfall is to return a pointer to a auto variable such as shown below:

char* foo(void)

{

 char x[] = "I only exist in this function";

 return x;

}

void setup(void)

{

 Serial.begin(115200);

 char *p;

 p = foo();

 Serial.println(p);

 Serial.println(p);

 Serial.println(p);

}

Since the variable x is an auto variable it is allocated on the stack when the function foo is called and

deallocated when foo returns. Since x has been deallocated the returned pointer points to a portion of

the stack that is sure to get overwritten the next time a function is called.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

77

Pointers and String Arrays

If we have a string array such as:

char x[] = "PIC 32";

We can get access to the value of each location in the string by using an index in the square brackets.

For instance, x[0] evaluates to the character 'P'.

But if we just evaluate x by itself, it returns the address of index zero.

char x[] = "PIC 32";

char *pv;

pv = x;

Stack

In this class we have already taken a look at one type of data structure called a stack. Recall that a stack

stores data one on top of another with the principle characteristic that the first element put in the stack

is the last out (FILO), and conversely, the last to element to be put in the stack is the first to come out

(LIFO). Think of a stack of trays in a cafeteria, where the trays are the data that gets stored in memory

and the stack is memory with the data stored in it.

We will not be implementing a stack, but since we have already seen them I thought it best to review

before moving on due to the similarity to that of our next data structure.

Queue

Think of a queue data structure as a line of people waiting to use

the bathroom. If you were British you might just say you were in

the queue for the loo.

The queue is similar to the stack in that we say the first element in

to the queue is the first out (FIFO) or the last element in to the

queue is the last out (LILO).

We will implement our serial receive buffer in a queue and we will

implement our queue using arrays and index variables.

Under the hood (Serial Receive Interrupt)

Whenever a character is received by the target board an interrupt is generated that temporarily stops

your program from running. The interrupt is then serviced which is to say the character received is read

from the microcontroller register that contains the received character and it is put into a buffer. The

interruption is quite short and unless we are doing something that requires strict timing requirements

and we are looking at signals on an oscilloscope it will probably be very hard to detect the interruption

and we will have the appearance that our program is uninterrupted.

The incoming stored data can be accessed by using the Wiring serial abstractions:

ADVANCED UNDERSTANDING

The way we will be

implementing our queue is

often called a circular buffer

since we will be using the

same memory over and over

again in a circle.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

78

Serial.available()

Which returns a value the number of bytes that have been received and are ready to be read.

Serial.read()

Which returns the next available character in the buffer.

Pointer Arithmetic
When you have a pointer variable, arithmetic operations can be done in the same fashion as non-

pointer variable. When doing an arithmetic operation on a pointer do not dereference the variable.

char x[] = "PIC 32";

char c;

char *pv;

pv = x;

c = *pv; // c = 'P'

pv = pv + 1; // add 1 to pv

c = *pv; // c = 'I'

pv = pv + 1; // add 1 to pv

c = *pv; // c = 'C'

pv = pv + 1; // add 1 to pv

c = *pv; // c = ' '

pv = pv + 1; // add 1 to pv

c = *pv; // c = '3'

pv = pv + 1; // add 1 to pv

c = *pv; // c = '2'

pv = pv + 1; // add 1 to pv

c = *pv; // c = 0 or '\0'

Pointers to strings

Standard String Functions

The following are a list of string functions that are defined in the string.h header included with boost and

linked in from a library if used. They are shown using the C data type of char* and int. The string library

and these functions are pretty common and can be found in most C compilers. If however you find they

don’t exist, you can recreate them simply.

unsigned char strlen(char *source)

Returns the length of a string (not counting the null termination.

void strcpy(char *destination, char *source)

Copies source to destination, memory for destination must already be allocated.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

79

void strcat (char *destination, char *source)

Concatenates the source onto the end of the destination string, memory for destination must already be

allocated.

signed char strcmp(char *s1, char *s2)

Compares two strings, if they are the same strcmp returns zero, if they are different strcmp returns a

non zero value.

signed char strncmp(char *src1, char *src2, unsigned char len)

Compares the first n characters of two strings, if they are the same strcmp returns zero, if they are

different strcmp returns a non zero value.

Sample implementation string pointer functions

int strlen(char *)

unsigned char strlen(char *s)

{

 int count = 0;

 while(*s != 0) {

 count++;

 s++;

 }

 return count;

}

Shown above is a possible implementation for the strlen function. The local variable count is used to

store the number of characters found in the array. The loop exits when s points to a memory location

containing the value 0x00. The string is iterated through by the use of pointer arithmetic and the loop

completes when the value of 0x00 is found in the array. Importing point: if the array is not null

terminated the function will never exit, or at least not until it finds a 0x00 in memory somewhere.

Custom String Functions

Besides the included string functions, we will often need to manipulate strings. The following are some

string functions that we may want to use in our programs. Be sure you understand the mechanics of

each function so that you can use what you have learned to write your own.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

80

Sample implementation string pointer functions

void toupper (char *)

void toupper (char *s)

{

 while(*s != 0) {

 if(*s >= 'a' && *s <= 'z')

 *s = *s – 0x20;

 s++; // increment the pointer by 1

 }

}

The toupper() take the address of a pointer to a null terminated character array and converts any

characters that are between lowercase a and lowercase z (inclusive) by subtracting 0x20 to their ASCII

value. The string is iterated through by the use of pointer arithmetic and the loop completes when the

value of 0x00 is found in the array. Importing point: if the array is not null terminated the function will

never exit, or at least not until it finds a 0x00 in memory somewhere.

void tolower (char *)

void toupper (char *s)

{

 while(*s != 0) {

 if(*s >= 'A' && *s <= 'Z')

 *s = *s + 0x20;

 s++;

 }

}

The tolower() works exactly like toupper() with the exception that it converts any characters that are

between uppercase A and uppercase Z (inclusive) by adding 0x20 to their ASCII value.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

81

Week 7 – Analog to Digital Converter (ADC)

What is an ADC
An analog to digital converter (ADC) is just what its name implies, that is, it’s a device that converts an

analog voltage to a digital numeric value that represents the measured analog voltage. The ADC we will

be using is built into the PIC microcontroller.

Example DVM

A device that we are all familiar with that has an

ADC would be a Digital Volt Meter (DVM). In

the image below the voltage that is to be

detected is measured with the probes and

passed through an analog frontend. Next the

ADC converts the measured voltage to a digital

number. The number is read from the ADC by

the microcontroller then displayed on the liquid

crystal display (LCD). The range selection

switches configure the analog frontend so that

the signal can be measured properly and let the microcontroller know what signal is being measured so

that the software can set the appropriate display elements for user feedback as well as correctly scale

values coming from the ADC into human readable format.

How does an ADC work

There are many different ways in which an ADC can be implemented. The implementations we will look

at are for demonstration purpose to gain understanding of how the ADC works. They could be used as a

basis for designing your own ADC, but from a practical standpoint an off the shelf ADC will be have a

much more sophisticated implementation.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

82

Counter and Comparator

At the simplest level an ADC compares two voltages using a comparator circuit. The two voltages

compared are an unknown voltage and a known voltage. To find the value of the unknown voltage a

known voltage is sweep from the ADC min to ADC max voltage. When the value of the known voltage

becomes larger than the unknown voltage the output of the comparator changes and this change is

digital and can be detected by a logic gate.

To generate the ramp voltage several digital outputs can be used to generate a current stair step signal

that combined with a transimpedance amplifier (TIA) to will create a voltage stair step. The circuit to

generate a stair step might look something like this:

Classification

There are two primary attributes that classify the abilities of an ADC. Resolution (Dynamic Range) and

Sample Rate (Frequency Range)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

83

Resolution (Dynamic Range)

The resolution of the ADC is determined by the number of bits that are store in the result of the

conversion.

For example, if our ADC is an 8-bit type then we can have 28 or 256 possible values for or converted

analog voltage. If the input range of our ADC is 0-3.3V then this mean the smallest voltage we can

discern is 3.3V/255 or 12.9mV. If our ADC is a 16-bit type, then we can have 216 or 65,536 possible

values for or converted analog voltage. If the input range of our ADC is 0-3.3V then this mean the

smallest voltage we can discern is 3.3V/65,535 or 50.3µV.

Resolution equates to dynamic range of the signal. You can think of this by thinking of a loud and quite

signal in succession. If we want to detect the small signal the loud signal will clip the inputs to our ADC

and will not be detected, however, if we want to detect the loud signal and we adjust the input gain to

the ADC then the small signal may be so low that we cannot detect it within a single bit of resolution.

Sample Rate (Frequency Range)

The sample rate of the ADC is determined by the clock rate at which the analog signal is converted to a

digital value. The faster the rate of conversion the higher of frequency a signal can be detected. The

highest signal that can be faithfully reproduced is known as the Nyquist Frequency and is ½ the sample

rate. When the input frequency is greater than the sample rate aliasing occurs and the signal captured

appears lower in frequency that than the actual signal desired.

Calculating Sample Values

When working with your ADC you are going to need to determine the value that your ADC will return

when a specific voltage is applied to the input. To calculate this, you can use the following equation:

Where ADCreg is the result of the conversion, Vin is the input voltage to the ADC, Vref is the reference

voltage (usually the maximum voltage that ADC will sample) and bits are the number of bits of

resolution for the ADC we are using.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

84

Sometimes you need to work backwards, that is we have the value from in the ADCreg but want to know

what voltage on the input gave us this value. In this case we solve the above equation for Vin and get:

Example

We have an input voltage of 1.5V a reference voltage of 3.3V and the resolution of our ADC is 10 bits.

This will give us 465 or 0x01D1. We can verify this by using the equation that is solved for Vin.

Measuring Voltages Out of Range

Most of the time ADC pins on the PIC are operated between 0V and Vcc of the chip. There are

exceptions that can be read about in the ADC section of the datasheet. If Vcc of our chip is 3.3V but you

want to measure a signal outside of this range how can this be accomplished?

Attenuation

If your signal is between 0V and some larger voltage then the signal need

only be attenuated with a voltage divider. I like to choose resistor values

such a 33K and 100K. This make the maximum voltage that can be measure

13.3V (33K/100K) = 3.3V when 13.3V is applied to VIN the VADC will see

3.3V. Of course, it would be a good idea to make sure that your maximum

voltage is not exactly 13.3V, for if it were and your resistors are not perfect

then you will not get exactly 3.3V on VADC. If VADC is too large you could

damage the microcontroller.

Amplification

If your signal is small (less than the resolution of the ADC or you would like greater dynamic range on a

small signal) or if your signal contains a negative voltage then an amplifier will be needed to condition

the signal.

Discussion of amplifier circuits is beyond the scope of the class, but MtSAC offers a fine class on the

subject called electronic devices.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

85

The PIC ADC

Successive Approximation

A problem arises with using a stair step, especially when a large number of bits are used. If your ADC is

16-bits, there the ramp would have to step through 216 or 65536 levels with each pass trying to detect

the unknown voltage. If you’re trying to convert a signal in a hurry it will take some time to detect your

signal. One possible way to speed it us is if you restart your ramp at zero as soon as you find your

unknown voltage, but this has problems as well. This will make the time between samples depend on

your unknown voltage.

A common solution to this issue is known as successive approximation. Successive approximation alters

a single bit at a time in a binary search to hone in on the unknown voltage. The unknown voltage can be

discerned in the same number of steps as bits of conversion.

Analog Multiplexer

In addition to using successive approximation, the PIC contains an analog multiplexer that allows you to

hook up several analog signals to a single ADC. Details on the operation of the ADC are included in the

PIC datasheet in the ADC section.

Integer Division (The modulus (%) and division operators (/))

To discuss division a quick reminder on terminology used when talking about the values use when doing

a division operation.

When operating on integer values in C and performing division the results of the division is truncated is

the number we are trying to divide is not evenly divisible. For example: 17 divided by 5 is 3 with a

remainder of 2. In C we can get quotient by using the division operator / and we get the remainder by

using the modulus operator %.

uint8_t dividend = 17;

uint8_t divisor = 5;

uint8_t quotient;

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

86

uint8_t remainder;

quotient = dividend / divisor; // quotient = 3

remainder = dividend % divisor; // remainder = 2

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

87

Week 8 – Mid Term / Lab Makeup

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

88

Week 9 - Synchronous Communications Protocols (SPI – I2C)

Chip to Chip Communications
If you think back to the beginning of this class you will remember that the microcontroller is a

microprocessor with memory, I/O and other peripherals that have all been put onto a single chip. But

before the advent of the microcontroller the memory, I/O and peripherals were all wired to the

microprocessor to give the functionality that we enjoy in a single chip today. A simplified block diagram

of such a system would look like this:

This diagram shows the connections between the CPU, ROM, RAM and GPIO using bus notation. A bus

is a group of connections that are drawn in a schematic as a single line with a slash (/) and a number

next to the slash showing number of wires in the bus. The diagram is further simplified in that there is

external (to the CPU and memory) chip select logic that is not show that is needed to determine which

chips are being selected by the CPU in any given cycle of operation.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

89

Buses

To understand how busses work you need to look ot the pinout of chips and how they connect together.

Below is shown a Motorola 6800 Microprocessors (not microcontroller) and a 27256 EPROM chip. The

address lines of each chip are labeled Ax (where A is short for address and the x is a bit number). When

a bus is drawn all the lines for a given bus move on a single line in the schematic. This makes drawing

and reading schematics eaiser.

If the buses were not drawn the diagram would look more like this:

Each of the signal wires shown in the above diagram is a binary logic line (0 or 1) or a single bit per line.

These pictures help illistrate that why an 8-bit computer is called 8-bit, namely that there is 8-bits in the

databus. In an 8-bit computer there are typically 16 address lines. The address bus is an output from

the CPU that is used to select a single memory location (or GPIO port). There are also some control

signals that orcastrate communications between the CPU and external devices. These control signal

provide timing (E) determine if the CPU is reading or writing (R/W). The 8-bit computer system

illistrated above is far simpler than the single PIC32 microcontroller used in this class.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

90

The Problem: Too Much Wire, Large Parts

So why look at this system? It is to help illistrate a point that when you build a system like this it

requires lots of interconnections. Each interconnect is a wire. If you were to prototype a system like

this you would have place a physical wire for each connection in the system. Below is an example of a

project that I built when I was a student at MtSAC using the Z80 microprocessor. At this time

microcontrollers were just coming on to the scene and they were not yet being taught at MtSAC. You

can see in this system that there are lots of wires that are used to connect memory to the

microprocessor (which would go in the 40 pin 600 mil spacing socket on the left if it wre installed.

Jacob Christ student project: Component Side (left) / Wirewrap Side (right)

Early designers of microcontroller system quickly realized all these interconnections meant that chips

needed to be physically large to accommodate all these connections. As you can see in the picture of

the 28 pin EPROM IC below, the actual silicon chip is quite small compared to the physical size of the

housing that is required to break out all of the pins that need to go to the chip.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

91

The Solution(s)

Some of the solutions offered are a reduction of the number of wires needed when communicating

from one chip to another. This is accomplished by changing the architecture of the system from using

parallel wires on a bus to sending data on serial connections from one chip to another. As we have seen

we can easily achieve bi-directional communications by using two wires and a ground connection using

an UART. UARTS are quite popular for use in system to system communications, but when we are doing

chip to chip communications there are some alternatives that are more common. The two most

common solutions are known as SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit).

The Tradeoff’s

The primary difference between UART and SPI or I2C is that they are synchronous which means that

they have a clock line synchronizing the data being transmitted or received. Additionally, SPI has a

physical chip select pin for each device we want to communicate with. The chip select is a signal that

originates at the microcontroller to select the chip. I2C uses a virtual chip select by sending data on

indicating which chip is intended to be communicated with.

SPI, and technologies like SPI such as I2C, have allowed chips to get smaller (by reduction of pin count

due to serial nature rather than parallel) and in turn allowed PCB’s to get smaller since less traces are

required on the board for chip to chip communications. Most mid-range and high-end PICs have the

capability to communicate with other ICs and devices.

Feature I2C SPI UART

I/O Pins 2 4 2

Top Speed 400kHz 20-40 MHz ~1 MHz

Address Mode Protocol Overhead External Chip Select None

Master Mode Multi Master Single Master Depends on Protocol

Other Issues Since the chip address is defined in

the protocol this may limit the

number of a particular chip type

that can be connected to the bus

Implementations vary From vendor

to vendor and can cause confusion

when setting up MSSP

UART's require crystal oscilators

which make the system and the

chip more complicated. A common

place wher UART would be used is

to talk to a GPS receiver that has an

on-board microcontroller and

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

92

Expanding the Functionality of the Microcontroller

Although the PIC microcontroller is an amazing device with multitudes of functionality sometimes the

functionality that one might want in an embedded system is not available in a single chip. Additional

functionality can be added by adding additional chips to our system that extend the capabilities of the

microcontroller and there are thousands of chips that can be easily interfaced to microcontrollers.

Without thinking to hard here is a small list of cool things that the PIC cannot do: There is no built in

display, GPS, DAC, it only has two UARTS, no ability to for RF communications, mass storage in the form

of EEPROM or flash memory. Below is a partial list of some devices available to extend the functionally

of a microcontroller.

Device Name Manufacturer Example Model Number Interface
MP3 Decoder ST Microelectronic STA013, STA015, etc... SPI, I2C
Ogg Vorbis / MP3 / AAC / WMA / MIDI audio codec VLSI Technology VS1053, etc.. SPI

MMC/SD Card To many to name To many to name SPI, 4-bit native

Pressure Sensor National Semi LM74 SPI

Real Time Clock Dallas DS1305, DS1306… SPI

Temperature Analog Device Inc. AD7816, AD7817, AD7818 SPI

Camera lenses Canon Canon EF lens mount SPI

EEPROM Microchip 25LC1024 SPI

LDC Drivers Sharp + others SPI

GPS Receiver Delorum SPI, USART

If a there is not a chip available off the shelf to do what you are looking for, this does not mean that it

cannot be done, but this discussion is beyond the scope of this class.

To gain the functionality our firmware will need to be able to send and retrieve information from these

devices. Shown below is block diagram of how our system might look with several chips connected to

the PIC.

In this section we will study chip to chip communications with the PIC32 with emphasis using SPI

communications module. But before we get stated we will take a quick look at I2C communications.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

93

I2C

I2C (Annunciated eye-squared-see or eye-two-see) is an acronym for Inter-Integrated Circuit. The

disadvantage is that since it does not have chip selects lines that chip address need to be transmitted

over the serial line. This adds overhead to the already slower than SPI communications, increases the

complexity of the communications protocol and adds complications as to possibly having chips with

overlapping addresses (since the address are built into the chip from the manufacture). Despite the

disadvantages of I2C the advantages are tremendous. The major benefit of I2C is that it requires only

two I/O lines for all devices.

The choice to study only SPI in this class should not provide a bias as to which to use in a project since

both have their place. The choice is a matter of practicality in a time limited form. At some future point

a module may be developed for self study for interfacing an I2C to a PIC and it is highly encouraged that

you pursue a self study of the technology after the class has completed.

Signals (two)

SCL (Serial Clock) – Output from the master

SDA (Serial Data) – Bidirectional communications

Typical I2C Interconnection Block Diagram

I2C Bus Protocol State Diagram

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

94

SPI

SPI (annunciated es-pee-eye) is an acronym for Serial Peripheral Interface. To understand SPI hardware

we should first review parallel to serial and serial to parallel shift registers. But first a quick reminder on

how D-Flip Flops work:

D Q

 CLK Q'

CLK D Q Q'

Non-Rising X Qprev Q'prev

0 0 1

1 1 0

The circuit below is a very simplified diagram that can act both as a parallel to serial shift register or a

serial to parallel shift register. For parallel to serial operation first the S inputs must be pulsed to make

all Q outputs logic 1. Next the Serial In is set to logic 1. Then with a single clock all logic inputs I0-I7 can

be loaded with a single clock pulse. At this point Serial out is presenting the MSB from the shift register.

To shift this data out, the inputs I0-I7 are then brought to a logic level 1 to allow data to shift through

the register. The clock is pulsed seven more times, with each pulse Serial out is presented with the next

most significate bit. As the data is clocked out, new serial data is clocked in.

The above is the basis for the SPI system on the PIC32. The actual hardware on the PIC32 is quite a bit

more complicate and includes additional buffers for both data shifting into and out of the PIC32. The

additional buffers allow for automated shifting of data without bogging down your program. The way

the buffers work is that you load your data into the buffer then your program continues while the

hardware in the PIC 32 shifts the data out for you. The PIC32 libraries for the that are part of the chipKIT

project do not take full advantage of this hardware. Hint, if your ambishious you could contribute your

time to the chipKIT project to improve these libraries. Indeed many companies look to contributions to

open source projects when evaluating canidates for employement.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

95

PIC32 SPI Block Diagram

Signals (three + one chip select for each device)

As you can see from the above block diagram for each SPI module in a PIC32 there are four processor

pins associated with it. These control signals are described below:

SCLK — Serial Clock, output from master (shared with all chips)

SDO (Serial Data Out) or MOSI (Master Output, Slave Input)—Shared with all chips

SDI (Serial Data In) or MISO (Master Input, Slave Output)— Shared with all chips

SS’ (Slave Select) — Input when configured as a slave device. Can be used a CS’ (chip select when

master)

In addition to the four dedicated SPI signal per SPI module on a PIC32 we will need to assign one GPIO

pin per device we need to communicate with.

CS’ (Chip Select)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

96

The chip select line for a SPI device is typically active low (which if you recall from digital means that it is

logic low when the signal is asserted and logic high when it is not asserted).

Master and Slave

SPI minimally needs one master and one slave device. The PIC32 can be either a master or slave device,

but we will study only the PIC32 as a master.

The SPI master is the device that controls the communications and generates the clock signal. There can

be only one master on an SPI bus. The slave device provides additional functionality to the master and

there can be many slave devices on a single SPI bus. A typical SPI system block diagram might look

something like this where there is a single master and many slave devices:

If we contrast SPI to I2C or UART communication we can see that the disadvantage of SPI is that it

requires a minimum of three I/O lines for communications (four if bidirectional communications is

required) and an additional chip select line for each additional chip added to the system. So, if four

chips are to be interfaced to the microcontroller and bi-directional communications is required this will

consume seven I/O lines of your chip (SCLK, SDO, SDI + 4 Chip Selects). A similar system implemented in

I2C or with a UART would require only two I/O lines. The required chip select line makes the protocol

easy to understand and interface to simple devices such as shift registers, it is also the fastest of the

three serial communication protocols we have looked at. These are why we are studying it.

Clock Frequency

The frequency that the clock runs out is configured by specifying dividing frequency from the

fundamental operating frequency of the PIC32. The clock dividers are available in powers of two due

using flip-flop frequency dividers to accomplish this task. The reason we use a divider is because the

hardware does not know what frequency it is running at. So, we simple specify a divisor value. Can you

think of some advantage and disadvantages to this approach? How could we specify frequency if we

only had hardware in the chip that was capable of frequency division?

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

97

Clock Phase and Polarity

There is one final but especially important consideration when using SPI. Setting clock phase and

polarity. There are four modes available.

Mode

Clock Polarity

(CPOL/CKP)

Clock Phase

(CPHA/CKE)

SPI_MODE0 0 0

SPI_MODE1 0 1

SPI_MODE2 1 0

SPI_MODE3 1 1

The most common is SPI_MODE0 but you need to compare the timing diagrams of the slave device to

the timing diagram from the PIC32 datasheet to know the correct SPI mode to use.

PIC32 SPI Timing Diagram Showing SPI Clock Phase and Polarities

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

98

Configuring SPI

Using the wiring to configure the SPI is as simple as doing the following.

1. Include SPI.h at the top of your sketch.

#include <SPI.h>

2. In setup() function, add SPI.begin()

SPI.begin();

3. Set the clock divider to one of the following values (80MHz clock divided by…):

SPI_CLOCK_DIV2

SPI_CLOCK_DIV4

SPI_CLOCK_DIV8

SPI_CLOCK_DIV16

SPI_CLOCK_DIV32

SPI_CLOCK_DIV64

SPI_CLOCK_DIV128

SPI.setClockDivider(SPI_CLOCK_DIV64); // Low frequency due to bread boarding

4. Set the SPI mode, clock polarity and phase:

Mode
Clock Polarity

(CPOL)

Clock Phase

(CPHA)

SPI_MODE0 0 0

SPI_MODE1 0 1

SPI_MODE2 1 0

SPI_MODE3 1 1

SPI.setDataMode(SPI_MODE0);

5. Set the chip select pins you wish to use to output where chip_select_pin_number is the number of

the pin of the board that will be used for the chip you are connecting the chip select to.

pinMode(chip_select_pin_number,OUTPUT);

The Arduino SPI API
The Arduino SPI API is documented here:

https://www.arduino.cc/en/Reference/SPI

https://www.arduino.cc/en/Reference/SPI

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

99

Digital to Analog Converter (DAC) – External SPI

Digital to Analog Converter (DAC)

A DAC is just what it sounds like and provides the inverse functionality of an ADC. That is to say it takes

a digital value as input and outputs an analog value (usually voltage or current) that can be used to

control an analog circuit.

The same rules for resolution and sample rate apply for a DAC as for an ADC and the calculations for

determining work in reverse. The equations for calculating the output voltage is shown here.

And the equation form above solved for the DAC register value is shown here.

MCP4902

The DAC we will be studying is the MCP4902 from Microchip. This DAC has 8-bits of resolution and two

channels in a single chip. This chip is part of a family and there are 10-bit and 12-bit variations available.

Once you know how to work with the 8-bit chip it will not be difficult to extend your code to

communicate with one of the other chips. A block diagram and pin out from the datasheet for the chip

is shown below.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

100

Typical Connection

The PIC does not have a built in DAC, so we will use an external DAC connected to the SPI bus of the SPI

module. Since the DAC takes digital data as input and outputs an analog voltage the Master SDI (MISO)

line of the SPI bus is not needed and all communications can take place using only the Master SDO

(MOSI), SCLK and CS lines. Show below is a typical connection diagram for connecting an SPI device to a

PIC microcontroller.

(form MCP4902 Datasheet)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

101

Communications Timing Diagram

When interfacing to a new SPI device it is important to understand the timing diagram for the device.

This allows us to understand what data needs to be sent or received from the chip to establish

communications with the chip. The diagram below is for the MCP4902 8-Bit DAC. The signals shown in

the diagram are CS, SCK, SDI, LDAC and Vout. All of these signals except Vout are outputs from the PIC

and must be assigned to pins on the chip. The Vout is the voltage out of the DAC. The SCK (Serial Clock)

line in an SPI system is always driven by the master. The SDI (Serial Data In) is into this DAC chip and

should come from the SDO (Serial Data Out) of the SPI master. Both the CS and LDAC signals can be any

GPIO line coming from the SPI master. The LDAC is not part of the SPI bus and is specifically for this DAC

chip. The LDAC is an active low signal that allows synchronizing the output update when multiple DAC’s

are used on the same SPI bus and the two output for the single DAC chip. This is useful if you do not

want to create a phase difference between analog outputs.

Another important thing to look at here is that the clock phase and polarity relationship between the

SCK and SDI lines. Although this data sheet shows suggested mode bits for the SPI clock phase and

polarity relationship not all datasheets do and if they do not then the system designer will need to make

this determination on their own.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

102

The interesting line to look at in this timing diagram is the SDI line. If you look closely what you see is

that each bit that is transmitted from the PIC has a name, and of course a function. The bits are

described in detail in the MCP4902 datasheet and the summary data from the datasheet is reproduced

here:

Note that the x bits are unknown or don’t care bits and are not needed to use the chip.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

103

Week 0x0A – Object Oriented Programming (C++ Classes and Objects)
An introductory look at classes and object-oriented programming as an organization tool.

The Problem: Brooks Law
As we have learned in this class, software can be complicated to create.

In 1975 the book “The Mythical Man-Month” by Fredrick P. Brooks was published. Brooks' observations

are based on his experiences at IBM while managing the development of

OS/360. He had added more programmers to a project falling behind schedule,

a decision that he would later conclude had, counter-intuitively, delayed the

project even further. -Wikipedia

(https://en.wikipedia.org/wiki/The_Mythical_Man-Month)

The primary cause of this problem arises from how intercommunications

between group members grows exponentially as the number of group

members grows linearly. The number of communications paths in a group is

given by the following formula:

Group intercommunication formula: p = n(n − 1) / 2

Where n is the number of group members and p is maximum the number of communications paths

between any two members. This is illustrated below where a circle represents a group member and a

line between two circles represents a communication path between any two members.

Example of n = 2, p = 2(2-1)/2 = 1:

Example of n = 3, p = 3(3-1)/2 = 3:

Example of n = 4, p = 4(4-1)/2 = 6:

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

104

Example of n = 100, p = 100 · (100 – 1) / 2 = 5000:

One of Many Solutions (Segmentation)
There are many tools to help resolve the problem presented by Brooks’ Law but in-depth study of

possible solutions is beyond the scope of this class. If you are interested in this topic or find yourself on

a team facing such problems this would be a good topic of independent study.

The solution we are going to look at in this class that relates specifically to the solution called

segmentation.

Let us consider six software developers working on a complex project. These developers decide to break

up the project into two major components and work in two groups. They then define how the

components will talk to each other so they can then work as two independent teams. If they work as a

single team then the geometric expansions of communications paths where n = 6 is p = 6(6-1)/2 = 15.

With two groups the communications paths can be reduced to seven as shown in the illustration blow.

This is better than half as many communications paths and improves the efficiency of communications

between team members and allows the project to move faster.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

105

Simply put, segmentation helps by minimizing the communication overhead between team members. A

problem is divided up into smaller sub-problems. Each sub-problem is solved by a smaller team. A top-

level team is responsible for sub-system integration into the larger problem trying to be solved.

So, you want to build something really ambitious?

Start with an idea of you want

Right now, you have nothing but an idea. Write down what the manifestation of your idea will be when

you complete your design and build process.

Divide your design into sub-problems

Small Teams

Remember, the more people on a team the more communications paths that are needed and the slower

the project will move.

Timeline

Each sub-problem should have similar timelines. If many teams are to be used in parallel this helps to

get all the pieces to come together at the same time.

As a rule of thumb, if a specific task is estimated to take longer than a day, then it is probably not

defined with enough granularity.

The Interface

The interface to the sub-problem should be well defined (not a moving target). This assures that the

parts of the project that need to connect to this system do not need to change much once the project

has started.

Repeat

Do this over and over until all sub-problems are sufficiently compartmentalized for the size of your

team.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

106

Example

The following example illustrates how a large problem can be broken down into many sub problems.

Your goal: 1. Build a self-driving car so that I can study on the way to school. Now break down your goal

into major section (segmentation):

1.1. Mechanics

1.2. Electronics

1.3. Software

1.4. Legal Team

1.5. Marketing

Repeat the process until the project has been sufficiently segmented for the available team.

1. Self-driving car

1.1. Mechanics

1.1.1. Chassis

1.1.2. Motor

1.1.3. Drive Train

1.1.4. Fairing

1.1.5. Breaking

1.1.6. Wheels

1.2. Electronics

1.2.1. Motor Ignition Control

1.2.2. Security

1.2.3. Entertainment

1.2.4. Windows

1.2.5. Safety (Headlights / Break Lights)

1.2.6. Driver Console

1.2.7. Cameras

1.2.8. LIDAR

1.2.9. GPS

1.3. Software

1.3.1. Driver Console

1.3.2. Cruise Control

1.3.3. Vision Software

1.3.4. Car Detection

1.3.5. Human Detection

1.3.6. Road Detection

1.3.7. Obstacle avoidance

1.4. Legal Team

1.4.1. Compliance with existing vehicle

design laws

1.4.2. Exploration of new legal

ramification of new technologies

1.5. Marketing

Examples of other projects that could benefit from this approach

Spaceship

UAV Drone

3D Printer / CNC Machine

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

107

Segmentation and Organization Tools in Programing
Let us review some of the tools we have already seen that can be used to help solve the “Brooks Law”

problem presented at the start of this section by use of segmentation.

First, we learned about functions which let us hide complex algorithms which we expose to the user of

the functions (ourselves in this case) by the function name. We can pass parameters to the functions

and get results back all while not having to concern ourselves with the underlying code while using

them. The function name, passed parameters and results are known as the API. API is an acronym for

Application Programmers Interface.

Recall the function that receive_function() is about twenty lines of code. But once we have analyzed this

function and know how it works, all we have to remember is that if we pass a pointer to a buffer and the

size of the buffer that it will return a true if a command is received over the serial port.

uint8_t receive_function(char* buff, uint8_t sizevar)

We have also explored the ability to create tabs for different parts of your program. For small projects

like we do in this class this may indeed be the only organization you need.

If you have named your tabs wisely and placed code in the coorasponding tabs that reflect the tab name

then you are using segmetation. A named tab has no restriction to what code you put in what tab.

There is no requirement that the functions in a specific tab be related to each other. So weather you

cleanly segment your code or not is up to you. The complier doesn’t know what things are related or

how they should be segemented. Segmenting the code in ways that make since is purely a human

endevor.

Object Oriented Programming as a Organizational Tool
Object orientated programing is software design philosophy combined with language features that assist

in the implementing segmented design in software. Use of these language features do not necessarily

make it easier to write a program and quite often can make it slightly more difficult. The underlying C++

language that is used with chipKIT is what provides the object-oriented features.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

108

So how does object oriented programing in C++ relate to and differ from the function and tab tools

mentioned above? In C++, a language feature called a class is used to help implement segmentation.

These features may at first seem a bit pointless when working by yourself (because you know how the

code works and wouldn’t use it wrong). When you are writing C++ code you need to think both like the

user of the code and the creator of the code. The user of the code wants it to be as easy to use as

possible without having to understand the details under the hood (information hiding). While the

creator of the code wants to make sure that code is run in the correct sequence and must know all the

details such as knowing which functions that should be called in which order.

Classes

The primary language feature in C++ that is used to implement object orientation is called a class. A

class is language syntax that is used to group our segmented code together. This code can consist of a

set of attributes (variables) that can be affected by methods (functions) all contained within the

namespace of the class. All related attributes (variable) and methods (functions) of the same class are

called members. An example of a class definition looks like this:

class ClassName

{

 private:

 type private_variable; // eg: uint8_t value;

 type private_method1 (type parameter)

 {

 // Code

 private_variable = parameter;

 }

 public:

 type public_variable;

 // Constructor method (function)

 ClassName(type parameter)

 {

 // Constructor Code

 public_variable = parameter; // okay to access public members

 private_variable = parameter; // okay to access private members

 public_method1(parameter);

 private_method1(parameter);

 }

 // Public Function

 type public_method1(type parameter)

 {

 // Code

 private_method1(parameter); // Okay

 private_variable = parameter; // Okay

 }

};

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

109

Qualifiers

type

When you see the symbol type above, this can be any valid C++ type. The easiest ones to think about

are the primitive types we have looked at so far such at char, int, uint32_t, char*, etcetera. In addition

to the types we know they can also be classes we or others have created.

Access Types

These members are assigned access of either public, protected, or private. The access of a member

dictates how a user of the class can interact with the members.

Public

Public member attributes (variables) and methods (functions) can be accessed by a user while private

members cannot.

Private

Private members cannot be accessed by a user of the class. For a user of a class to cause private

member to be accessed it must be done through a public member method (functions) that is accessed.

The public member can the access private attributes (variables) and methods (functions).

Protected

Protected members are beyond the scope of this class but are used when multiple classes work

together.

Class as an Abstract Data Types
Up until this point any variable that we have declared has been what is known as a "primitive type".

Typically, in the field of computer science, something referred to as a primitive implies that it can get no

simpler. If we were thinking about primitive shapes a list might include things like "circle, triangle,

square". From primitives we can build more complex things, in programming when we group more than

one primitive type together this is known as "abstract data type" or simply an ADT. One mechanism in

the C++ programming language to build an ADT is what is known as a class (others are called structs or

unions). A class is a collection of primitives and other structures that are in a common collection to

create something altogether new. The whole thing is quite simple.

Class as ADT Example

We have seen examples where we can read a register from and ADC and massage the value read with

mathematics to finally store it in a primitive data type called a float as a voltage. But what if we wanted

to represent the properties width and height of a rectangle in a “single” variable. We cannot do it

because all C++ primitives are single scaler values. We could define a class call Rectangle like this:

class Rectangle

{

 public:

 float width;

 float height;

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

110

};

This class is an ADT or just a type that we can use in our programs like the primitive types we have been

using so far.

Classes are Recipes for Creating Objects or Code Reuse (Nut and Bolt Model of Programming)

A class can be thought of as a recipe for creating objects. These objects that are created is where the

term object-oriented programing comes from. This paradigm can be thought of as a nut and bolt model.

If you want to build a device that needs fasteners the lowest cost solution is to use an off the shelf

(class) nut or bolt and use the same ones over and over (objects). There is another analogy that is closer

to home

Objects

Classes are just definitions. The realization of a class in a program is called an object. Continuing with

the Rectangle class from above if we wanted to create an object of type Rectangle we would do so like

this:

Rectangle r1;

Accessing the public members is done by using the object name followed by a decimal point then the

name of the member.

r1.width = 1.3;

r1.height = 2.0;

If we needed to know the area of a rectangle, we could create a method to find this for us and include it

as part of the class. This might look like this:

class Rectangle

{

 public:

 float width;

 float height;

 float area() {

 return width * height;

 }

};

Accessing the public members is done by using the object name followed by a decimal point then the

name of the member.

Serial.print(r1.area(), 2); // print out: 2.60

Classes have two special methods that cannot return a type called the constructor and destructor. The

construct is called when an instance of a class is created (an instance how we say that an object has

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

111

been created or instantiated). Destructors are called when a class is destroyed. Constructors share

their name of the class. If we modify our Rectangle class so that it has a constructor, we pass the values

of width and height to the object as it is being created.

class Rectangle

{

 public:

 float width;

 float height;

 Rectangle(float new_width, float new_height) {

 width = new_width;

 height = new_height;

 }

 float area() {

 return width * height;

 }

};

Rectangle r1(1.3, 2.0);

Serial.print(r1.area(), 2); // print out: 2.60

This from a user perspective this code just got a little simpler because we no longer need to set width

and height after the object has been created. But what if we as the class designer wanted to prevent

the user of a class from accessing the width and height after the object has been created? This can be

accomplished by making width and height private members like this:

class Rectangle

{

 private:

 float width;

 float height;

 public:

 Rectangle(float new_width, float new_height) {

 width = new_width; // we can still access private member here

 height = new_height; // we can still access private member here

 }

 float area() {

 return width * height;

 }

};

Rectangle r1(1.3, 2.0);

Serial.print(r1.area(), 2); // print out: 2.60

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

112

Once we have made width and height private this code will no longer work, indeed we will not even be

able to compile our program without an error.

r1.width = 1.3; // width now private, this is not allowed.

r1.height = 2.0; // height now private, this is not allowed.

Functions outside of in class structure

Member functions (methods) can be defined outside of the class structure. When doing so the function

definitions for the above class would look something like this:

class Rectangle

{

 private:

 float width;

 float height;

 public:

 Rectangle(float new_width, float new_height);

 float area();

};

Rectangle::Rectangle(float new_width, float new_height) {

 width = new_width; // we can still access private member here

 height = new_height; // we can still access private member here

}

float Rectangle::area() {

 return width * height;

}

In general:

type ClassName::method(type parameter)

{

 // Code

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

113

Example chipKIT Serial Class.
C:\Users\username\AppData\Local\Arduino15\packages\chipKIT\hardware\pic32\2.1.0\cores\pic32

Print.cpp / Print.h

A (not so) practical (but fun) example

// Arduino IDE 1.8.12, chipKIT core 2.1.0

const uint8_t max_x = 30;

const uint8_t max_y = 20;

class NPC { // Non Player Character

 private:

 public:

 uint8_t x;

 uint8_t y;

 NPC();

 void move();

};

class BOARD {

 private:

 public:

 static void draw(NPC *npc, uint8_t max_player);

};

NPC::NPC() {

 x = random(0, max_x);

 y = random(0, max_y);

 Serial.print("x=");

 Serial.print(x, DEC);

 Serial.print(" y=");

 Serial.print(y, DEC);

 Serial.println("");

 delay(1000);

}

void NPC::move()

{

 uint8_t d;

 d = random(0, 3);

 if (d == 0) {

 x++;

 }

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

114

 else if (d == 1) {

 x--;

 }

 d = random(0, 3);

 if (d == 0) {

 y++;

 }

 else if (d == 1) {

 y--;

 }

 x++;

 y++;

 if (x >= max_x) x = 0;

 if (y >= max_y) y = 0;

 if (x < 0) x = max_x - 1;

 if (y < 0) y = max_y - 1;

}

void BOARD::draw(NPC *npc, uint8_t max_player)

{

 uint8_t x;

 uint8_t y;

 uint8_t player;

 uint8_t draw;

 y = 0;

 while (y < max_y) {

 x = 0;

 while (x < max_x) {

 draw = 0;

 player = 0;

 while (player < max_player) {

 if (x == npc[player].x && y == npc[player].y)

 draw++;

 player++;

 }

 if (draw > 0)

 Serial.print(draw, DEC);

 else

 Serial.print(".");

 x++;

 }

 Serial.println("");

 y++;

 }

}

const uint8_t max_player = 10;

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

115

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 while (!Serial); // Wait for the PC to open the serial port

 //delay(100); // Give the terminal time to open.

 Serial.println("Serial port has been opened");

 delay(5000);

}

void loop() {

 // put your main code here, to run repeatedly:

 static NPC npc[max_player];

 Serial.println("Looping...");

 BOARD().draw(npc, max_player);

 int player = 0;

 while (player < max_player) {

 npc[player].move();

 player++;

 }

 delay(100);

}

Why Study Classes and Object-Oriented Programming
The ideas learned while studying C++ are very transferable to C#, Java, PHP, Objective-C, Object-

Oriented Python and many of the other popular object-oriented programming languages in uses today.

Things we are not discussing about classes
C++ is a complex topic and mastery of its features would be difficult to do in a single semester class let

alone a single session. Below is a list of some of the more common feature of the language that we did

not cover, but there are many more as well.

Destructors

Function called when a class is destroyed

Protected

Can be accessed by class methods (functions) and friends. Not discussed here.

Function Overloading

Outside the scope of this class. Can be used to pass different number of parameters to different

functions with the same name, example:

int void add(int a, int b)

int void add(int a, int b, int c)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

116

Inheritance

Outside the scope of this class.

Topic: Libraries

Wiring Libraries

Arduino and chipKIT build on the Wiring Paradigm

Parts of a library

Header File

Source File (may be in the header)

Keywords file

Libraries may be C or C++

A Final Word of Caution
Using classes does not guarantee segmentation of ideas in your code. You can still mix ideas together

and end up with non-segmented code that uses classes and objects. This is probably worse than not

using them at all! Just because you use object-oriented paradigms such as objects and classes, doesn't

mean they are being used correctly. A class can be poorly designed and make programming more

difficult.

Using classes and objects in your program enforces a level of organizational discipline. It is easy to

bypass this discipline but doing so negates the use in the first place.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

117

Week 0x0D – Liquid Crystal Display (LCD) and Shift Registers
In this lab we are going to add a LCD (Liquid Crystal Display) to our project with utilizing the SPI port. An

LCD is a visual output device. LCD’s generally come in four flavors of devices: dotmatrix, character

(bitmapped dotmatrix per character), segmented and a hybrid displays of the previously mentioned.

Displays come in either a mono chromatic or can be colored differently from display to display. There

are also many RGB (Red Green Blue) graphical bitmap displays available.

Sample Liquid Crystal Displays

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

118

LCD Construction
Each element of and LCD that can be controlled is a pixel. Dotmatrix displays have many pixels that are

usually small squares placed close together. Segment display can have many different pixel shapes that

can be very either very primitive such as squares or rectangles or can be very organic and flowing in

shape.

Each pixel of an LCD typically consists of a layer of

molecules aligned between two transparent electrodes,

and two polarizing filters. When a voltage is applied to

the electrodes it causes the liquid crystals to twist (or

untwist). This twisting of the crystal will allow light to

either pass or not through the display. There are two

primary types of light paths through the display,

transmissive and reflective. Reflective displays have a

reflective surface under the liquid that light is reflected

off of and require lots of ambient light to be able to see

the pixels of the display. Transmissive displays allow light

to easily pass through them and usually require a

backlight in order to see the display. Transmissive

displays usually are very hard to read in direct sunlight

and reflective displays are very hard to read in a dark

room.

On smaller displays such as we will use in this lab, there is

one electrode that acts for all pixels in the display and is

usually called the backplane electrode. Then each pixel will have its own electrode that allows for

individual control. When there are a large number of pixels in a display, it is not practical to drive each

pixel directly. This is resolved by multiplexing the pixels in the display and providing different backplane

electrodes for blocks of the display.

The Big Picture
In this lab we will be interfacing to a three character seven-

segment display. Each character in the seven segment display

has, you guessed it, seven segments (or pixels). The display

also has two segments that are decimal points between the

characters.

The display is normally blank, but a pixel will turn opaque when a potential is applied from the

backplane to the electrode of the element we wish to display. Only a small voltage is required to cause

the pixel to turn opaque and the 3.3V out of a pin of the PIC is plenty to accomplish this. However, in

this lab we will not be biasing the LCD with the PIC, but with the output from shift registers.

Wikipedia Information on Electrodes

An electrode is an electrical conductor used

to make contact with a nonmetallic part of a

circuit (e.g. a semiconductor, an electrolyte

or a vacuum). The word was coined by the

scientist Michael Faraday from the Greek

words elektron (meaning amber, from

which the word electricity is derived) and

hodos, a way.

Faraday, Michael (1834). "On Electrical

Decomposition". Philosophical Transactions

of the Royal Society. Archived from the

original on 2010-01-17. Retrieved 2010-01-

17. (in which Faraday coins the words

electrode, anode, cathode, anion, cation,

electrolyte, electrolyze)

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

119

Biasing the LCD
The LCD is not polarized and it does not matter whether we apply 0V to the backplane and 3.3V to the

pixel electrode or the other way around (3.3V to the backplane and 0V to the pixel element). In fact, not

only does the polarity not matter but it is desirable to alternate the polarity very rapidly. If the polarity

is not alternated then the current running through the liquid crystal will cause the crystals to migrate

out of their location and the pixels to blur over time. Our driver that writes to the display will handle

this by alternating the voltage going to each pixel and the backplane each time we refresh the display.

Bitmapping
In the DAC lab we use an oscilloscope to display images and text. The graphics in that lab were rendered

as pixels (a pixel is a picture element) on a dot matrix. We rendered these pixels by plotting a pixel for

each x,y location we wanted lit up. Storing information like we did may be desirable if we only have to

plot a few points, but if we need to update large portions of the display and may be displaying widely

varying images then bitmapping is a solution that we can use to pack a lot of information into a small

space. In the case of the two 8-bit x,y dac’s we have a the possibility of having 65536 (256x256) pixels.

Each pixel can be either on or off (hey that’s binary). So if we reserved enough memory to store each of

the 65536 bits on or off it would require 8192 bytes (1 bit per pixel, 8 bits per byte so 65536 / 8 = 8192).

This seems like a lot of bytes for our little PIC especially when we are using a 8K byte limited device and

indeed it is. The efficiency of storing information in a bitmap only becomes an advantage over x,y

locations when at greater than 6.25% of the pixels are lit up (65536 * 0.0625 = 4096 pixels, 4096 pixels*

2 bytes per location = 8192. Also, once you switch to a bitmap all images have the same storage

requirements creating predictable storage requirements. Further, there are many efficient algorithms

available to compress a bitmap to an even smaller size (such as RLE (Run Length Encoding)).

Storing Character Maps
When working with the seven-segment displays we will need to turn on the pixels

that are needed to make our numbers and alphabet. The pixels in a seven-segment

display are labeled a through g in a clockwise rotation around the outside of the

character starting at the top segment and ending with the g segment in the middle.

Each segment can be either be either on or off (binary). So if we wanted to make

the number four we would need to turn on segments b,c,f and g as shown in the illustration.

We could use an x,y type scheme to keep track of which pixels we want on, but since there are so few

pixels in this display we would only need one byte and could create a function that would turn on a

segment that could look something like this:

 lcd_segment(‘B’);

 lcd_segment(‘C’);

 lcd_segment(‘F’);

 lcd_segment(‘G’);

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

120

Although functional, this scheme would require a maximum of 7 bytes to store essentially 7 bits all of

which would fit into a single byte. If we bit map the character assigning each pixel to a bit position in a

byte then we could store any possible character image in a single byte. I’m going to choose to make the

lsb, segment a and assign each remaining segment in increasing order to the next most significant bit

leaving bit 7 unassigned to a value. Then if I want a segment lit the bit will have a value of one and not

lit will be a value of zero. Thus the bit map for the number four will look like this:

Value g f e d c b a Hex

4 0 1 1 0 0 1 1 0 0x66

The creation of the remainder of the bitmaps are left as an exercise in the lab.

Waste No Bits
The remaining bit will not go unused. In our display we have three characters and if we have one byte

per character this means we will have three unused bits. We shall not let these bits go to waste. Our

display also has two decimal points that can be either on or off. The way the display is physically wired

these decimal points are associated with the two right most characters and so we will use bit 7 in these

two characters as decimal point.

There is also the matter of the backplane. As mentioned previously we will need to alternate the

backplane voltage between 0V and 3.3V to prevent liquid crystal migration. Since the left most

character still has a free bit 7 we can use this to control the backplane voltage.

Getting the Data to the Bits
So by now we know we have three bytes worth of data that need to get to the display and if your

keeping track of bits this means that there are 24 bits worth of output needed (3 character x 8 bits per

character). Since our PIC has only 28 total pins if we dedicated 24 of them to displaying data on the LCD

we couldn’t do much of anything else (if anything). So rather than tie more processor pins we can just

hook up a few shift registers (serial in, parallel out) to the SPI

bus and whaw-la, 24 more outputs.

Shift registers can be chained together where the last bit out

of the register can be tied to the first bit of the proceeding

shift register to create a larger multi-byte shift register.

A Funny Thing Happened on the way to Lab
When I was choosing the chips for the labs I was rushed and

didn’t have as much time as I would have liked. So I ended

up choosing a shift register that doesn’t quite work the way I

would have liked. Some shift registers are double buffered,

that is to say data can shift through them without affecting

the output. Then when the data is ready to be presented to

the output a clock signal moves the data on the internal shift

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

121

register to the output registers such as the 74594 shown here.

Not to be discouraged I decided that there was a learning opportunity here, two in fact. The first is that

often you need to slow down to get the job the job done correctly from the beginning and that this in

the long run will save time. If the PIC we are using didn’t have the re-assignable pin feature (and most

do not) then the chip chosen would not have worked and we would have needed to use a chip as shown

above. The second is the versatility of the re-assignable pin feature is allowing us to get out of a pinch of

not having the correct chip.

74164 Functional Diagram

With the shift register that has an output latch the clock and data can always be hooked to the shift

register and a chip select need only be used to indicate that the data is ready to be presented to the

outputs. With the shift register we have there is no way to disable clocking of data through the chip. So

when we are sending data to the DAC this data will be presented on the output of the shift register and

therefore on our display. There are several ways we can fix this.

We can buy new chips that work with the SPI model. If we were designing this into a product and may

expect to add additional SPI devices later and we had only spent about $1.50 on the shift register we

had then this would probably be the best solution.

We can add external logic that prevents the clock and or data signals from getting to the chip that is

controlled with a chip select line. This is nice in that if follows the SPI model and makes the device now

work properly, but the external logic chips will add size and cost to the circuit. This option may be best if

there is little time or money and you have the chips on hand to solve the problem. When I say little time

I mean less than 24-48 hours since you can get replacement chips overnight from a distributor such as

Digikey and when I say little money I mean less than a few dollars plus shipping costs.

Or we can use the re-assignable pin feature of the PIC and take the clock signal away from the device

when we are not shifting bits out the port.

We will choose the latter.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

122

Shifting Through The Registers
When hooking up three shift registers,

API
The final API for using this LCD might look something like this:

 lcd_display_number(uint16_t value, uint8_t dp_bits);

 lcd_display_string(char* string, uint8_t dp_bits);

Where value the first function will display a numerical value between 0 and 999. And the second will

display a three character string.

Encoding Numbers and Letters on a 7-segment display

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

123

Week 0x0E - Tones, Timing, Time, PWM, Servos and Tasks

Tones
The tone() and noTone() are used to control generation of a square wave output on a single pin. They

are named tone and noTone because they are commonly used as outputs to drive speakers or piezo

buzzers to play tones. They could also be used for other applications that require a variable frequency

input.

tone()

Generate a tone (square wave) on an I/O pin at frequency Hz. If duration is greater than 0 the tone will

play for the specified number of milliseconds. If duration is less than 0 it will be generated indefinitely

until noTone() is called. If duration is 0 it acts the same as if noTone() had been called.

Prototype(s)
void tone(uint8_t pin, unsigned int frequency)

void tone(uint8_t pin, unsigned int frequency, unsigned long duration)

Parameter(s)

pin: GPIO pin to generate square wave on.
frequency: Frequency in Hz of generated square wave.
duration: time in milliseconds to play the tone, 0 will play indefinitely.

Return Value

None.

Example(s)

Several examples are available in the File->Examples->02.Digital section of the Arduino IDE. All

examples that start with the word tone use these functions.

noTone()

noTone() stops generating a tone on an I/O pin which has previously been started through the tone()

function.

Prototype(s)
void noTone(uint8_t pin)

Parameter(s)

pin: GPIO pin to stop generating square wave on.

Return Value

None.

Example(s)

Several examples are available in the File->Examples->02.Digital section of the Arduino IDE. Some

examples that start with the word tone use this function.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

124

Timing
To time a fast changing pulse on a specific pin the pulseIn() function can be used.

Time
The following fucntions exist that are helpful for creating timed delays or timing events:

delay(), delayMicroseconds(), millis() micros()

PWM
There is also another set of functions that can be used to generate square waves with variable duty cycle

called analogWrite(). The analogWrite() functions also have are so named because they if the digital

pulse signal is integrated (averaged) then the duty cycle becomes the average voltage generated (similar

to using a DAC).

analogWrite()

analogWrite() is used to control the PWM functionality of pins which are connected to (or can be routed

to) the hardware Output Compare module within the main MCU. Pins which do not support PWM will

be either set to a constant HIGH or LOW value depending on the value input to the function. A 50%

threshold value is used to decide if the pin should be HIGH or LOW.

The PWM generated is at an 8-bit resolution and typically in the region of 500Hz carrier frequency. The

input value 0 and 255 are equivalent to a constant LOW and constant HIGH signal respectively. Values

from 1 to 254 inclusive represent a duty cycle for the generated square wave. The percentage value of

the duty cycle is equivalent to (val ÷ 255) × 100 so 127 represents a 50% duty cycle.

Prototype

void analogWrite(uint8_t pin, int val)

Return Value

None

analogWriteResolution()

analogWriteFrequency()

Servos
The servo library allows you to generate a PWM signal specifically for controlling an RC servo.

#include <Servo.h>

Servo myservo;

void setup()

{

 myservo.attach(9);

 myservo.write(90); // set servo to mid-point

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

125

}

void loop() {}

Tasks
The following documentation is specifically for chipKIT-core.

The task manager allows the creation and operation of background tasks. A task is a user defined

function that is executed automatically at specified intervals or at a specified time. Using tasks can

simplify the logic of programs that need to perform periodic operations.

Scheduling of tasks for execution is done prior to each execution of the user function loop() and during

time spent in the delay() function. In order for task scheduling to work reliably, the time to execute the

user loop() function should be short; preferably less than a millisecond, but no more than a few

milliseconds if the timing accuracy of task scheduling needs to be precise. Time spent in task functions

contributes to the total execution time of the loop() function, as all task functions currently scheduled

for execution will be called before loop() is called.

The actual time at which a task will be run can vary by -0/+N milliseconds from the scheduled time,

where N is the longest time that it takes for execution of the user loop() function plus the longest

execution time for all tasks that can be scheduled for execution at the same time. The interval from

when a task is created or enabled to the time of first execution can be +/- 1 millisecond in addition to

the above noted error due to the fact that the user program’s execution is asynchronous to when the

millisecond tick counter is updated.

The scheduling times for task functions is based on the system millisecond tick counter. This is the value

returned by the millis() function. This tick counter runs continuously and gives the number of

milliseconds elapsed since the system started running.

Here is a sample blink sketch using the task manager:

 /*

 Blink Task

 Blink LED1 with a 500ms cycle (2Hz)

 Blink LED2 with a 510ms cycle (1.96Hz)

 Utlizing the chipKIT task manager rather than delay functions.

 This example code is in the public domain.

 */

 int blink1_id;

 int blink2_id;

 unsigned long blink1_var;

 unsigned long blink2_var;

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

126

 void blink_task1(int id, void * tptr) {

 digitalWrite(PIN_LED1, !digitalRead(PIN_LED1)); // Toggle pin state

 }

 void blink_task2(int id, void * tptr) {

 digitalWrite(PIN_LED2, !digitalRead(PIN_LED2)); // Toggle pin state

 }

 void setup() {

 // initialize the digital pin as an output.

 // Pin 13 has an LED connected on most Arduino boards:

 pinMode(PIN_LED1, OUTPUT);

 pinMode(PIN_LED2, OUTPUT);

 blink1_id = createTask(blink_task1, 250, TASK_ENABLE, &blink1_var);

 blink2_id = createTask(blink_task2, 255, TASK_ENABLE, &blink2_var);

 }

 void loop() {

 }

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

127

Week 0x0B / Fubarino SD, SD Cards

Accessing prior information

What is an SD Card
Byte addressable non-volatile memory in a small removable package.

Flash Memory

Non-volatile

Writable and erasable memory

Stores Information

files and folders

meta data

File name

Size

Last touched (modified) date time

Location on disk

Permissions

Directory Structure

File system Information (FAT)

Volume

Digital interface for accessing information

SPI

1-Bit SD Bus Mode

4-Bit SD Bus Mode

File System
The file system is an arbitrary construct that is imposed on the memory of the storage device to organize

the information stored within. It is arbitrary in that there are many to choose from (in the world).

Though there are tradeoffs between the selections of one verse another almost all have a primary user

perspective in play. Namely a structure to store information about the information stored on the

device.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

128

The default file system on most SD cards when purchased is some form of FAT (File Allocation Table). If

the file system on the card is not what you need, it can be changed by a program capable of such

functions.

Hierarchy

This is a short, but popular, list of existing file systems in use:

FAT16, FAT32, NTFS, ext2, ext3, ext4, HFS, HFS+, ZFS

Why use a file system?
You can transfer files to and from another device that recognizes the file system.

What is a file

Name

The file name is the text presented to the user of a file system that is used to uniquely identify a specific

file in a specific directory. It is therefor not possible to have two or more files with exactly the same

name in the same directory. Modern operating systems support so called “long filenames” because the

names of the files can be quite long (255 characters). This, however, was not always the case. Prior to

Windows 95, MS-DOS and Windows computers only supported “8.3” filenames on a FAT file system.

Since most SD cards are formatted with the FAT file system and since there are patents associated with

long file names and FAT, chipKIT and Arduino currently only support 8.3 filenames. The 8.3 filename can

have a maximum of eight characters followed by a period then a maximum of three more characters.

Data

All files are best thought of as an ordered sequence of binary data. The data in its simplest form is an

ordered sequence of bytes and would be considered a binary file. Files are categorized in to different

file types, but all file types at their core are just an ordered sequence of bytes.

File types

Early on in the computing world, files fell primarily into two types. Binary and text. As previously

stated, all files are really binary files, so what differentiated a text file from a binary file was that data

stored in the text file is interpreted as ASCII data. Interpreted by whom? By whatever program was

reading the file. The primary way a program knows what the file type is by means of an extension that is

added to the end of the file.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

129

 Timers / Real Time Clock Calendars
The connotative meaning for the general public of a timer will invoke ideas of a egg timer like that which

is used in a kitchen or a stop watch such as is used in sports. However when we use the term timer in

the embedded systems context we are typically thinking of something very different yet related to the

afore mentioned devices. The egg timer and stop watch are examples of real time clocks.

A real time clock or RTC as they are often referred to maybe better thought of as clocks that work on a

human time scale (that is time that is "real" to a human). Where as a timer in an embedded systems

timers is used to time events in sub human time scales. For a PIC32 (chipKIT) running at 80MHz

Fubarino SD uC's
PIC32MX440F256H and PIC32MX795F512H

Core Timer Service Overview
(from chipKIT.org)

The core timer is a facility built into the MIPS M4K processor core in the PIC32 microcontroller. It is

made up of a 32-bit counter register and a 32-bit compare register. The counter register increments at

1/2 the processor clock frequency (SYSCLK). The default SYSCLK frequency is 80Mhz, so the core timer

counter increments at 40Mhz. The compare register can be used to trigger an interrupt (core timer

interrupt) when the counter matches the value loaded into the compare register.

In the chipKIT Arduino IDE system, the core timer is used to manage the timing of events at 25ns

(nanosecond) resolution. The core timer service facility allow service functions to be registered that will

be called by the core timer interrupt service routine (ISR). A core timer service function indicates to the

core timer ISR the system time (i.e. core timer counter value) at which it should be called next. This

allows a service function to schedule itself to be executed at any time up to 90 seconds in the future

with 25ns resolution. This allows event timing to be done with great precision.

In the chipKIT Arduino IDE system, the core timer service facility is used to implement the low level

timing function millis(). When the system starts up, it registers a core timer service function that

schedules itself to be called once each millisecond. This service function then maintains the system

millisecond tick counter that is returned by the millis() function.

A core timer service function is a callback routine that is registered with the CoreTimerHandler Interrupt

Service Routine (ISR). This functon will be called when the core timer counter has reached the core timer

service’s trigger time. Each time a core timer service function is called, the current core timer counter

value is passed in as a parameter. The core timer service function returns the counter value of the next

time it wishes to be called, i.e. the next trigger time.

The core timer service function is guaranteed to be called no earlier than it’s next scheduled time, but

may be called late. This can occur if interrupts have been disabled, as the core timer ISR will not execute

again until interrupts are re-enabled. This will also occur when writing to the flash memory in the PIC32

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

130

microcontoller. When a flash memory page write is performed, the processor stops executing

instruction for 20ms, although the core timer counter continues to increment. In general, the current

time passed in will typically be a few ticks after the requested trigger time. This is usually not a problem

as the tick period is 25 nsec. However, if interrupts have been disabled, the service function may be

called as much 20-50ms late. It is up to the service function to handle being called late.

The core system time (i.e. core system counter value) is a 32 bit unsigned integer and wraps once every

2^32 / 40,000,000 or ~107.3741824 seconds. When the service functon is called, the current time as

represented by this 32 bit unsigned integer is passed in as a parameter. Up to 90 seconds may be added

to the current time to specify the next trigger time. Do not worry about the 32 bit unsigned integer

wrapping in value as the core timer service assumes the next 90 seconds of time is in the future. Do not

exceed 90 seconds as the CoreTimerHandler potentially regards anything beyond that is a time before

the current time. It is a requirement that a core timer service function return a next trigger time 0-90

seconds in the future. It may not return something that the CoreTimerHandler ISR may regard to be in

the past, that is, do not subtract from the current time, always add to it.

When a core timer service function is registered, the first call to the function will occur on the next

regularly scheduled call to the CoreTimerHandler ISR. The system always has a millisecond CoreTimer

Service registered and this will typically ensure that a newly registered Service will be called within 1 ms

of being registered. However, should interrupts been disabled, this may be late up to 20-50ms.

Currently, a maximum of 3 core timer services functions can be registered simultaneously. One is always

taken by the millisecondCoreTimerService. Therefore there are two available slots open for use. To

register a core timer service function, call attachCoreTimerService() passing a pointer to the service

function. The attachCoreTimerService() function will return false (0), if there are no open slots available.

You may de-register (remove) a core timer service function by calling detachCoreTimerService() passing

a pointer to the function to remove. Once removed the slot becomes available for another core timer

service function to be registered. NEVER remove the system millisecondCoreTimerService function.

The rules for a core timer service function:

Do NOT set the core timer “compare” register directly! If you don’t know what this is, GOOD, don’t fool

with it.

Do not do anything that could cause the CoreTimerHandler ISR to be called recursively. Primarily, this

means do not enable interrupts as the core timer interrupt flag is still set and will immediately cause the

system to call CoreTimerHandler ISR recursively.

The current time is passed to the service function as a parameter. This is usually several ticks after the

requested trigger time, but if interrupts were disabled this may be as much as 20-50ms late.

The current system time is obtained by reading the core timer counter register when the

CoreTimerHandler ISR is entered. This is the value passed as a parameter to the service function. It may

actually be several ticks old. For this reason is okay to read the core timer counter register directly.

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

131

Typically this is not necessary as the current time is only out-of-date by a few nsec, which is just the

delay in the instructions executed to call the callback Service.

A Service will never be called before the requested trigger time, but it may be called late.

Do not return a next trigger time more than 90 seconds in the future. Each tick is 25 nsec, there are

40,000,000 ticks in a second; therefore do not add more than 90*40,000,000 to the current time for the

next trigger time. Do not attempt to return a negative time, always add time to the current time, do not

subtract. It is okay for the 32 bit unsigned integer value returned to wrap when added to the current

system time to determine the next trigger time.

If the service function returns a next trigger time that is very near to the current time, it is possible for

that system time to have already passed. Under this condition, the CoreTimerHandler will immediately

call the service function again with an updated current time without exiting the CoreTimerHandler ISR.

Because the CoreTimerHandler ISR may immediately call a service function without exiting the ISR (as in

the previous rule), it is imperative that the service function execute in a timely manner. If the service

function takes too long to execute, it is possible to create a condition where the CoreTimerHandler ISR is

never exited. In this case, no processor time will be given to execute anything else, include the primary

sketch. Remember, the service function is executing within the context of an interrupt, so the function’s

code should be written to complete very quickly.

Once a Service is registered, it is typically called for the first time within 1 ms of registration unless

interrupts were disabled, and then it could be as much as 20-50ms late.

Do NOT remove the pre-registered millisecondCoreTimerService CoreTimer Service, this will break the

system!

Examples:

Example 1

The simplest of core time service examples: simply schedule a callback at a particular frequency (in this

case, 10KHz) and toggle an output pin in the callback. This callback produces a 500nS pulse on pin 4

every 100uS.

/* CoreTimer demo1 : demonstrates a simple callback scheduled at

a single frequency (10Khz). This example code is in the public domain. */

void setup() {

 pinMode(4, OUTPUT); // Use IO pin 4 to show operation of callback

 attachCoreTimerService(MyCallback);

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

132

// We don't need to do anything in the main loop

void loop() {

}

// For the core timer callback, just toggle the output high and low

// and schedule us for another 100uS in the future. CORE_TICK_RATE

// is the number of core timer counts in 1 millisecond. So if we

// want this callback to be called every 100uS, we just divide

// the CORE_TICK_RATE by 10, and add it to the current time.

// currentTime is the core timer clock time at the moment we get

// called.

uint32_t MyCallback(uint32_t currentTime) {

 digitalWrite(4, HIGH);

 digitalWrite(4, LOW);

 return (currentTime + CORE_TICK_RATE/10);

}

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

133

Week 0x10 - Mid Term 2 (Final)

Errata’s
Don’t forget to read the chip errata’s (especially before you commit to a chip for your design).

An Introduction to Embedded Systems - Spring 2020
Lecture Notes By Jacob Christ

134

Apendix A – History chipKIT and the development tools
Arduino got its start by combining the MIT Wiring library (http://wiring.org.co/) with a GUI that is based

on the Processing programming language (https://processing.org/).

The Arduino project started in 2005 and was an early open hardware project that gained momentum

quickly and is seemingly everywhere as of this writing in 2016.

On May 23rd of 2011 Microchip Technology and Digilent Inc. announced the release of chipKIT UNO32

and MAX32 development boards based on the Microchip PIC32 Microcontrollers. The original

announcement stated that chipKIT was software and hardware compatible. Unfortunately, the

compatibility was not 100% and there was community backlash.

The original Arduino IDE that supported only Atmel processors is forked by Rick Anderson and Mark

Sproul to create MPIDE with the goal of creating a development tool that is Arduino compatible but

would work for any embedded platform. They fell short of their goals but did get it to work for

Microchip PIC32 processors.

October 22nd 2012 Arduino Due is released. Changes made in MPIDE to support PIC32 were taken back

into the Arduino IDE tool to allow the ARM base Arduino Due to compile in the Arduino IDE.

December 12th 2016 Arduino IDE version 1.6.7 has ability to take a link to import cores for other

processors.

January 19th 2016 chipKIT-core released with ability be used within Arduino 1.6.7

Sources
http://chipkit.net/about-us/

https://www.arduino.cc/en/Main/ReleaseNotes

https://en.wikipedia.org/wiki/Arduino

http://www.microchip.com/pagehandler/en-us/chipKIT-Development-Platform.html

http://chipkit.net/about-us/
https://www.arduino.cc/en/Main/ReleaseNotes
https://en.wikipedia.org/wiki/Arduino
http://www.microchip.com/pagehandler/en-us/chipKIT-Development-Platform.html

