

 // ITES LAB1-1, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Lab 1 – Installing and Using the Arduino IDE for chipKIT Development

Attribution
This lab was developed by Jacob Christ with help from former Mt.SAC students the chipKIT and Arduino

community. Notable help from Brian Dobrovodsky (content), John Tsai (content), Michael Skoczen

(content and testing), Brian Schmalz (installing drivers), Rick Anderson (review and installing chipKIT-

core) and Mark Christensen (testing).

Equipment Needed
Windows XP (or better) Computer or MACOSX (Lion or better) Computer

Arduino Uno

chipKIT development boards (the more you have the better off you are)

USB Cables (type depends on the boards you have)

 // ITES LAB1-2, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 1 - Arduino IDE
The Arduino IDE is a software tool that is used to develop C

and C++ programs for the Arduino and chipKIT

development boards we will be using. IDE is an acronym for

Integrated Development Environment. The acronym stems

from the traditional combination of serval programs being

required for embedded development being integrated into

a single environment. Among other things, the Arduino IDE

is a combination of the following technologies:

Text Editor: used for editing of text files, also known as the

source code.

Compiler: used to change source code into object code.

Linker: used to convert one or more object code files into a

single machine code file.

Programmer: used to transfer the machine code file from

our development computer to our target board.

Serial or Plotting Monitor: used to interact with our target

board to test our program.

This set of tools is used in an iterative process to develop

programs. This process is shown in the side bar and mirrors

the order the tools are presented above.

The Development Process

(as opposed to the creative process)

1. Enter source code in a text editor.

2. Compile source code into object

code.

3. Link object code together into

executable machine code.

4. Upload machine code to the

target platform.

5. Test machine code in target

application.

 // ITES LAB1-3, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Windows

The Arduino IDE is compiled to run on a Windows PC, MAC OSX and Linux (as well as possible others).

This section of the lab is written explicitly for Windows, since these are the computers available in the

computer lab at the school I teach at. This lab was written using the Windows 10 operating system, and

the computers in the classroom typically have Windows XP. There is a slight difference that will be

addressed in class.

For instructions on installing Arduino IDE on a Mac computer visit the following site:

https://www.arduino.cc/en/Guide/MacOSX

For instructions on installing Arduino IDE Linux computer visit the following site:

http://playground.arduino.cc/Learning/Linux

Where to find the Arduino IDE

These labs were tested using versions 1.6.7 and 1.84 of the Arduino IDE but they should work with any

version of the IDE that works with chipKIT-core. Download the zip file from this page by clicking on the

link text “Windows ZIP file for non admin install” found on the following page:

https://www.arduino.cc/en/Main/Software

The Arduino IDE is a fast changing open source tool and there are many versions to choose from. If

version listed at the top of the page is not the version you are looking for then you should be able to find

it on a link somewhere on this page that contains a list of previous released versions of the software.

Save the zip file to the desktop of your computer.

https://www.arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux
https://www.arduino.cc/en/Main/Software

 // ITES LAB1-4, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Unzipping the file in Windows

The file you have downloaded, regardless of the

operating system, is a compressed file. In Windows this

file can be extracted by right clicking on the downloaded

file and picking the "Extract All..." item on the pop-up

menu.

A new dialog will appear that asks for the location to

extract the files too. This location should be your

desktop.

Click the "Extract" button to extract the Arduino IDE.

This may take a few minutes due to the large size of the

program. When complete this will result in a new folder

on your desktop called "arduino-1.6.7-windows" which

will contain the extracted development tools.

The Arduino IDE should work from any folder but for consistency in this manual it will be assumed that

the Arduino IDE will be in a folder onto the Desktop.

Creating a Shortcut

You could easily run Arduino IDE by just double clicking on arduino.exe file in the unzipped folder,

however for the class we will make a shortcut to the executable by right clicking on arduino.exe and

selecting copy then right clicking on the desktop and pasting as a shortcut.

 // ITES LAB1-5, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Your desktop will now look something like this:

How to run Arduino IDE

Double click on "arduino.exe - Shortcut" icon on your desktop and you should get a window that looks

something like the one pictured below.

Check off

Part 1 of the lab is complete, call the instructor over to verify your installation.

 // ITES LAB1-6, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 2 Arduino Device Drivers and the Windows Device Manager
Plug in an Arduino Uno board into your PC and wait for Windows to begin the driver installation process.

If you are on a Mac, Linux or Windows 10 the board should be found automatically. If you are using an

older version of windows then after a few moments, the process will fail, despite its best efforts.

In Windows XP Click on the Start Menu, and open up the Control Panel. While in the Control Panel,

navigate to System and Security. Next, click on System. Once the System window is up, open the Device

Manager.

In Window 7, 8 you need only search for the “Device Manager”

In the Device Manager Look under Ports (COM & LPT). You should see an

open port named "Arduino UNO (COMxx)" or USB Serial Device (COMxx). If

there is no COM & LPT section, look under "Other Devices" for "Unknown

Device". You may have to plug and unplug the board a couple of time to

figure out which entry in the device manager corresponds to the board you

have. You can tell which entry is yours because it will disappear when you

unplug your board.

Right click on the "Arduino UNO (COmxx)"

port and choose the "Update Driver

Software" option.

Next, choose the "Browse my computer for

Driver software" option.

 // ITES LAB1-7, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Navigate to and select the “drivers” folder in the Arduino IDE install

folder on your desktop. Once selected, click okay and windows will

search for the driver to install.

A Windows Security message may show up like is shown below. Click

install to install the driver.

Once the driver has been installed you will get a

dialog box as shown to the right.

The Device Manager entry will now update and

show a new device under the Ports (COM & LPT)

hierarchy for the Arduino Uno on (COMxx).

Finally, make note of the assigned COM port number. This will be useful later when trying to upload

programs to our board.

 // ITES LAB1-8, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Check off

Part 2 of the lab is complete, call the instructor over to verify your installation.

 // ITES LAB1-9, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 3 Get Blink Sketch to run on Arduino Uno

The Arduino IDE

If not already running, double click on "arduino.exe - Shortcut" icon on your desktop and you should get

a window that looks something like the one

pictured to the right. Some notable items on

the IDE window are pointed out below.

Menus

Icon Bar short cuts

Filename

Text editor where we edit our program

Code (and comments) rendered in colorful text

Compiler and Program Transfer Status

Selected target board and COM port Status

The Icon Bar

The most freqently used buttons when you are trying to get a program working are on the Icon Bar. A

brief description of each button is given here:

Verify: compiles your code. Any

errors are shown in the black status

box at the bottom of the IDE.

Upload: Compiles your code then

attempts to write the compiled

machine code to a connected board.

New: Creates a new sketch.

Serial Monitor: Open a serial terminal

to interact with your running

program.

Save: Saves your work.

Open: Opens an existing sketch.

 // ITES LAB1-10, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Sketches

All programs written using the Arduino IDE are called sketches. The idea behind the sketch is that

Arduino IDE makes writing a programming as simple as an artist picking up a paper and pencil to draw a

sketch and hence the name.

Example Sketches

One way to learn how to sketch is by looking

at example sketches created by others. The

Arduino IDE comes with many example

sketches to help you understand how to write

programs for Arduino and Wiring compatible

boards such as chipKIT. These sketches are

accessible from the File menu by moussing

over Examples. As you can see from the image

to the right in this installation there are many

examples to choose from. We will start at the

beginning and try a "01.Basic" sketch called

"Blink". Mouse to and click on the "Blink"

sketch to open the example file.

Blink Sketch

When you select the "Blink" example a new IDE

window will open leaving your unused sketch

behind the new example sketch. Notice that you

can resize the window so that you can see the

whole sketch on the screen in a single glance.

Two things should look different in this new

window.

The tab will be named "Blink"

The text shown in the window is now filled with

the code for this loaded sketch.

Notice also that the IDE editor has color coded the

"source code" to make it easy to distinguish the

parts of the code. The color code is listed roughly

below.

Gray: User comments, orange: function calls, olive:

function definitions, blue: qualifiers and constants.

The “out of the box” functionality of the "Blink"

 // ITES LAB1-11, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

sketch is to blink a LED connected to the board at a rate of 1/2Hz (one second on then one second off).

Selecting the Board

Now that we have a useful program loaded into the

IDE we must next select the board we wish to run

our program on. This is done from the Tools->Board

menu. In this lab we will be trying to run the "Blink"

sketch on several different boards Arduino and

chipKIT boards. But for now we can only test on the

Arduino Uno since we have not yet loaded the

chipKIT core into the IDE. The board we will be

testing on is the Arduino Uno. So select the

“Arduino/Genuino Uno”

Selecting the COM Port

After selecting the target board, we must next select

the COM Port the board is mapped to on our

computer. This is done through the Tools->Port menu.

Sometimes the board or COM port we are looking for

is not present in the list of ports. When this happens

the “Ports” menu item will be grayed out as shown to

the right. This can happen when the driver is not

installed correctly or the board is not plugged in to our

computer.

If the COM Port for our board is present, select it so

that we can test our program.

Compiling the Sketch

Before we actually try to program our board, we need to verify that our program is syntactically

correct. As mentioned previously the "Verify" button will compile the program. When you press

it the bottom of the Arduino IDE interface will indicate that the program is compiling by displaying

"Compiling sketch..." and showing a progress bar.

 // ITES LAB1-12, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

When finished compiling the stats will change to "Done compiling." and if everything was syntactically

correct the size of the sketch will be displayed.

Upload and Test

Next press the upload icon button and observe the LED blinking on the board.

Check off

Part 3 of the lab is complete, call the instructor over and demonstrate uploading the program to the

board.

 // ITES LAB1-13, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 4 Installing chipKIT-core into Arduino IDE and chipKIT drivers

Arduino IDE as a Multiplatform Tool

The Arduino IDE, as of version 1.6.x, is a multiplatform Arduino Compatible Integrated Development

Environment. "Multiplatform" implies that it works with more than one platform. A platform in the

embedded development world usually implies a family of microprocessors chips that have a common

microprocessor architecture. You can think of different platforms kind of like different construction toys.

For example, Lego bricks and Mega Bloks bricks. Both can be used to construct sculptures but they may

not be interchangeable. That is to say they are different platforms for construction. In the case of

embedded development, the tools used to convert your program source code to machine code are

usually for a specific platform or architecture of microprocessor.

chipKIT-core

Platform tools for the Arduino IDE are implemented in what are called cores. The Arduino IDE comes

with the 8-bit Atmel AVR core pre-installed. This core works with the chips on the original Arduino Uno

and related boards. In other words, the 8-bit Atmel AVR platform. Besides the Arduino 8-bit Atmel AVR

core there is also an Arduino 32-bit ARM core that does not come pre-installed as well as many others.

The core we are going to be using is called the chipKIT-core and it targets the 32-bit Microchip PIC32

microcontrollers (which are based on the MIPS 4000 microprocessor). Besides the listed cores in the IDE

and the chipKIT-core there are cores made by others and probably more on the way. The reason the

cores for all these different platforms are not included by default is that they are quite large. If they had

been included, it would mean you would need extra hard drive storage and more importantly extra time

to download cores you are not planning on using. What a waste!

The Arduino IDE with the chipKIT-core installed utilizes the gcc open source C++ cross compilers. A cross

compiler is a tool that lets you generate machine code for one computer architecture on another. The

chipKIT-core cross compiler has similar functionality that you would find in a C++ compiler for writing

applications for a PC but utilizes libraries specifically written for chipKIT embedded hardware.

Programming is done utilizing the C++ language but automatically included libraries allow a beginner to

ignore (at least in the beginning) the complexity associated with C++ so that they can dive in and get

started creating fast.

To use an additional core the Arduino team created a mechanism within the IDE to allow you to simply

install a core by copying and pasting a URL in the IDE and then go to a “Board Manager” to download

selected versions of additional cores.

 // ITES LAB1-14, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Installing chipKIT-core

From within the Arduino

IDE, click on the following

menu items:

File->Preferences (for

Windows) or Arduino-

>Preferences (for a MAC)

This will open the

preferences dialog box.

Within the preferences dialog box look for the text entry field called "Additional Boards Manager URLs:".

Click the icon to the right of the text field to open a new dialog box to allow you to edit all additional

board manager URLs.

Each URL in the “Additional Boards Manager URLs” dialog must be on a line by itself. With this dialog

box open copy and paste onto a blank line the following URL to enable downloading of the chipKIT-core:

https://github.com/chipKIT32/chipKIT-core/raw/master/package_chipkit_index.json

https://github.com/chipKIT32/chipKIT-core/raw/master/package_chipkit_index.json

 // ITES LAB1-15, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

The Arduino IDE lets you have many different cores loaded into the IDE as long as each URL is on a

separate line. Click OK to close the Additional Boards Manager URLs dialog box and then click OK again

to close the Preferences dialog box.

Now select the Tools->Board->Board Manager

menu from the Arduino IDE, and it will open up

the Boards Manager window. Once open you will

see several other cores that are not installed by

default. It may take a few seconds to retrieve the

chipKIT information from the internet, but

eventually the chipKIT-core will show up and be

presented in the list of cores.

Scroll down until you see the “chipKIT by chipKIT

Community” board listing. Click once on any of the

text in this section. Once you click a dropdown menu

and an Install button will appear.

Select version 2.0.1 then press the Install button. It

will take some time to download all of the chipKIT

components and install them, but when it's done,

you can click the Close button to close the Board

Manager window.

Once complete verify the chipKIT-core is installed by looking in the boards menu for the chipKIT boards.

Do this from the Tools->Board menu and scroll down until you see the chipKIT boards.

As new versions of the chipKIT-core files are released, you will be able to update your chipKIT-core files

from inside the Arduino IDE. During this class, refrain from upgrading to be assure that all your labs

work.

This section of the lab manual was largely based on documentation on the chipKIT wiki. In addition to

this method there are also other ways to install a chipKIT core which are documented here:

http://chipkit.net/wiki/index.php?title=ChipKIT_core

http://chipkit.net/wiki/index.php?title=ChipKIT_core

 // ITES LAB1-16, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

USB Drivers for chipKIT Boards

A device driver, or often simply referred to as a driver, is a piece of software that is either pre-installed

or installed after the fact in an operating system to allow the operating system to interact with a piece

of hardware connected to the computer. The driver needed depends on the piece of hardware you are

connecting to your computer. Most, and maybe all, of the chipKIT boards need one or both of the

following drivers. An FTDI (Future Technology Devices International, ftdichip.com) VCP (Virtual COM

Port) driver or a chipKIT USB CDC-ACM driver. As of this writing the latest versions of Windows (10),

MAC OSX and Linux have these drivers built into the operating system. If you are using an older version

of Windows, you may need to install these drivers yourself.

FTDI

FTDI VCP drivers are needed for boards that have a very popular USB to Serial converter chip made by

FTDI. Some examples of these boards are the Uno32, the Max32. The FTDI VCP driver can be

downloaded from their web page:

 http://www.ftdichip.com/Drivers/VCP.htm

Look for the operating system you are using to download the latest version of the driver. In windows

you will download a zip file. Save this file to your desktop and right click on it to extract the files.

Run the executable and the driver will install within a few seconds.

chipKIT

Later chipKIT boards used the built in USB interface that is available on some PIC32 microcontrollers.

Programing in the bootloader of the chip allows the USB port connected to these chips to emulate a

virtual serial port, often referred to as a CDC-ACM USB device. These drivers are included in the chipKIT-

core but can be difficult to find on your hard drive. Alternatively, the drivers located in a zip file can be

downloaded from the following location:

https://github.com/chipKIT32/chipKIT-drivers/releases/download/v1.0/drivers_windows_v1.zip

Like the FTDI driver above, save the zip file to your desktop, extract the files and run the executable.

Follow the instructions given by the executable to install the drivers.

Check off

For the check off of this section of the lab, demonstrate that the chipKIT core is installed within the

Arduino IDE and that the operating system can connect to a chipKIT board. The easiest way to

demonstrate connection is to plug in and un plug your board and verify that the COM port for the board

is added then removed from the Tools->Port menu in Arduino IDE.

Part 4 of the lab is complete, call the instructor over and demonstrate.

http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/chipKIT32/chipKIT-drivers/releases/download/v1.0/drivers_windows_v1.zip

 // ITES LAB1-17, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 5-8 - Get a Blink sketch working on 4 different chipKIT boards

The Blink sketch for the Arduino Uno specifically blinks the LED connected to Pin 13. The developers of

chipKIT realized that not all boards would have LED’s connected to the same pin. Because of this they

added a macro to the board definition files that automatically will select the correct pin to use for the

LED on the selected chipKIT board. Open the File->Examples->01.Basics->Blink sketch.

The LED_BUILTIN Macro

On the lines of the sketch with the pinMode() function and the pinWrite() function the macro

LED_BUILTIN will change the depending on the board you tell the IDE is connected to the computer.

The LED_BUILTIN macro is the abstracted pin number on the

target board that we want to blink. Most target chipKIT boards

have these macros defined. Depending on the board you are

using you may need to replace LED_BUILTIN with the correct pin

number to get the desired LED to blink. For the Fubarino SD,

LED_BUILTIN does not need to be changed. In the chart below

you will see a list of boards used in this class and the pins on the

boards that have LED's connected to them.

Here’s something to try, use a value other than what is expected and see if the LED blinks?

Board LED1 LED2

Fubarino SD 21 N/A

Uno32 13

Max32 13

uC32 13

UAV100 80 83

Quick-240 37 81

Uno 13

 // ITES LAB1-18, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Selecting the board

With the new chipKIT-core installed you

can now select a chipKIT board to run our

program on. This is done from the "Tools-

>Board" menu under the chipKIT section.

Connecting the board to the computer

Most chipKIT and Arduino boards will

connect to a computer with a USB cable.

Additionally, most boards will also be

powered by the computer stealing power

from the USB port. USB cables have four

connections: +5VDC, GND (ground), DATA+,

and DATA-. Newer microcontrollers run on

+3.3V or lower and boards such as the

Fubarino SD, chipKIT Uno32 and PONTECH

Quick-240 will have voltage regulators on

board that lower the +5VDC from the USB

cable to a usable +3.3VDC for the microcontroller.

 // ITES LAB1-19, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Getting to the Bootloader

A bootloader is a small program that is pre-loaded on to each board by the manufacturer (or yourself if

you happen to be the manufacturer) that allows the board to communicate with another computer in

order to receive additional programs.

Before you can program the board, it needs to be ready to receive the data and "sitting in the

bootloader" the Uno32 and Arduino Uno do this automatically but the others need more steps.

Fubarino SD: The Fubarino SD has two buttons on the top of the board labeled PRG and RESET. The

Reset button does just that, it will reset the microcontroller. The PRG button, if held down during a

reset will cause the board to enter the bootloader. When in the bootloader the GREEN led will blink

rapidly.

A video showing the procedure to get the Fubarino SD into the bootloader can be found here:

http://www.youtube.com/watch?v=7Knri2QWEFU

PONTECH UAV100: Put the jumper in the programming position, then push the button.

PONTECH Quick-240: Similar to the UAV except rotated and you short the two pins next to the jumper

instead of using a button

 // ITES LAB1-20, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

The Arduino Uno, chipKIT Uno32, chipKIT Max32 and chipKIT uC32 have a chip that can control the reset

line of the microcontroller allowing the Arudino IDE to force the device into reset prior to programming.

Because of this no special reset sequence is needed to program these boards.

Selecting the Serial Port

Each chipKIT or Arduino board connected to your computer may have different COM ports associated

with it. This is especially true if you have more than one board connected at the same time. Follow the

instructions in part 3 of this lab to select the a serial (COM) port to connect to your board. This is due to

the COM port number being chosen by the computer. If there is only a single device that has a COM port

on the computer then finding the correct COM port is easy, for it will be the only one in the list.

However, if there is more than one COM device connected to the computer you will need to figure out

which COM port is for the device you want to program. This is simply done by looking at the list of

available COM ports prior to connecting your board and then again after connecting and noting the new

COM port that was added after your board was plugged in. If no additional COM port is found after

plugging your board this could be due to one of several issues.

• The driver for the board you are using is not installed.

• The device you are using is not in the bootloader.

• The USB Cable is damaged.

• The board itself is damaged.

Check off

Demonstrate uploading the blink sketch to four different chipKIT boards. At least one must be a Uno32

or Max32 and at least one must be the Fubarino SD.

Additional information for the boards used in this lab can be found on these web pages

Fubarino SD

http://fubarino.org

Digilent Uno32, uC32 and Max32

http://www.digilentinc.com

PONTECH UAV100 and Quick-240

http://www.pontech.com

http://www.quick240.com

 // ITES LAB1-21, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Part 9 - Anatomy of a Sketch and User Sketches

Anatomy of a Sketch

Let's examine each parts of the Blink sketch in detail. The first six lines of gray/green text in the sketch

are encapsulated with the delimiters /* and */.

These delimiters and everything between them are called a multiline comment. Comments in general

are notes that the programmer leaves for themselves to remind them what the program does or

specifics that need to be adhered to when altering the program. Comments have no affect on how the

program runs or what it does.

Next is the setup function.

The setup function is five lines long. The first and last of the function are what define and encapsulate

the function. The function consists of four important aspects.

1. The return type. In this case void which simply means this function is void of a return type.

2. The function name. In this case: setup.

3. The parameter list, a comma separated list encapsulated by parenthesis after the function

name. In this case an empty list.

4. The function encapsulating curly braces which are always { (open curly brace) and } (close

curly brace). The function definition exists between these two braces.

The setup() is a function that is run only once at the start of the program. Setup as its name implies is

usually used to setup the processor for the remainder of the program.

Again, the lines that are in a gray/green font are comments.

When you see setup() in the text if you were to read

the it out loud you would say "setup function" where

the parenthesis indicate that it is a function.

 // ITES LAB1-22, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

However, these comments are single line comments and are delimited by the // at the beginning of the

comment and a newline at the end.

Finally, a function call to pinMode(pin, pin-mode);.

This function configures pin of the control board (pin 21) to be of pin-mode type OUTPUT. The values

LED_BUILTIN and OUTPUT are said to be the parameters that are passed to the function. The

parameters for the function are encapsulated by parenthesis and separated by commas. Finally the call

to pinMode() ends with a semicolon.

The second function is called loop().

The loop function has four function calls and four comments. The digitalWrite(pin,state); is used to set

the selected pin to the selected state. In our case we are setting pin 21 to either HIGH or LOW. The

delay(ms); causes the program to wait ms milliseconds.

As you might have guessed the loop() is a function that is run over and over. Loop is the location where

you put the portion of your code you want to repeat, to perform the main task of the device.

So the loop() causes pin 21 to go HIGH, waits for 1 second then causes pin 21 to go LOW and waits an

additional second. The program then repeats until the board is reset or until power is lost.

 // ITES LAB1-23, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

User Sketches

You cannot modify and save an example sketch. If you modify the program and want to save it, it will

then become a User Sketch. They are accessible from the Open Icon and File->Open->Sketchbook

The default save location in Windows is C:\Users\<username>\Documents\Arduino

The default save location on a MAC is /Users/<username>/Documents/Arduino

Where <username> is the name of the computer user that you are logged on to the computer as.

Modified Blink

Replace the loop() function in your code with the one shown below. Save it as a user sketch, compile

and upload it to a board.

Check off

Call the instructor over for a check off. You will need to demonstrate the uploading of the program to

the board.

Part 10 - More advanced Blink
Alter the loop so that you will get a pattern of one long, two short, one long, then one short blink.

Check off

Call the instructor over for a check off. You will need to demonstrate the uploading of the program to

the board.

 // ITES LAB1-24, Copyright 2013-2018 ProLinear/PONTECH, Inc. //

Lab 1 Homework

Get Arduino IDE with chipKIT core working on your own
Get Arduino IDE working on your own computer or a computer you have access to outside of class. Get

the blink sketch working and uploading to a board on your own.

Investigate chipKIT on the internet

chipKIT Web Page

chipkit.net

chipKIT Forum

The chipKIT forum (http://chipkit.net/forum/) is a place people can go to get help with a problem they

are having in using chipKIT compatible boards, get code other people have written for their own

projects, or share code they think will be helpful to others.

Investigate Aruduino language reference
Web Site: https://www.arduino.cc/reference/en/

Investigate Fubarino SD
Web Site: fubarino.org

Development Repository: https://github.com/fubarino/fubarino.github.com

Investigate Ardublock
https://learn.sparkfun.com/tutorials/digital-sandbox-experiment-guide/setting-up-arduino-and-

ardublock

Investigate Open Source
Many of the boards you are going to be using are Open Source. Open Source is an idea where a Product

or Software has if schematics and source code available for other people to use. This can help users of

the product to get the most out of it because if they don't like a part of it they have the information

needed to change it. Open Source also allows people to make new products based off old ones without

having to start from scratch.

Be prepared to discuss advantages and disadvantages in next class.

Investigate Wiring Pin Abstractions
http://wiring.org.co/

Most brands of microcontrollers have different ways that the software uses to control the output pins of

the part. This compiler uses Pin Abstractions to prevent this from being a problem, it knows what kind of

chip is being programmed and uses the correct method. They also allow the designer of the board to use

pins that are not adjacent on the processor as sequential abstracted pins.

https://www.arduino.cc/reference/en/
https://learn.sparkfun.com/tutorials/digital-sandbox-experiment-guide/setting-up-arduino-and-ardublock
https://learn.sparkfun.com/tutorials/digital-sandbox-experiment-guide/setting-up-arduino-and-ardublock

