Lab 3 - Digital Input - Conditional Statements

Part 1 - Pull-ups, Inputs and Resets

How to connect a switch to a microcontroller input

When a pin on the microcontroller is configured as an input using the pinMode(pin,INPUT) command it
puts the pin into a high impedance and is said to be floating if the pin is not connected to any other part
of the circuit. A floating pin is due to the nature of the insulated gate of the FET not having any current
path. If there is no current path then a static charge can build up onit. If

there is no charge on a floating pin it will be interpreted as a logic 0 but with 3.3V
a little stray charge the pin will be interpreted as a logic 1. If we wish to

hook up a simple SPST (Single Pole Single Throw) switch to the *5/(5
microcontroller we need to force the insolated gate to a known charge state. T
That is done by connecting the pin to ground or Vdd with a resistor. (Vdd is C-PIN
the voltage that the microcontroller runs at and typically will be either

+3.3VDC or +5VDC but other voltages are possible). When a resistor ties an Z ol
input pin to a voltage level it is called either a pull-down (when connected to E E- +
ground) or pull-up (when connected to Vdd). In the case of a pull up a SPST a =[]
(single pole single throw) switch can then be connected to the uC pin to

ground. This way when the switch is open the uC pin sees the voltage at Vdd 55

(logic 1) and when the switch is closed the uC pin sees OV (ground). The
circuit to the right is an example of a typical pull-up with a N.O. (Normally Open) SPST switch to ground.
This circuit results in a logic 1 on the uC pin when the button is not pressed and a logic 0 when the
button is pressed. Reversing the place of the resistor and switch in this circuit will create a pull-down
equivalent and the logic will be reversed.

How to choose the resistor value for the pull-up or pull-down

Essentially any resistor value that is significantly greater than zero will work, however, thanks to ohms
law and the RC time constants practical values are usually between 2K Ohms - 100K Ohms. Values too
close to zero will cause excessive power draw since our power supply voltage (V) is fixed and the inverse
relationship of resistance (R) to power (P):

VZ
"R

P

Since the insolating gate of the transistor acts like a charging a very small capacitor (gate capacitance C)
when the switch is open excessive values of R will cause the time (approximately 57) that it takes the
charge to build up on the FET gate to be slow and limit our frequency response (which for a human
pushing a button can typically be ignored).

T=RC

// ITES LAB3-1 Copyright 2013-18 ProLinear/PONTECH, Inc. //

If values increase further then the resistors ability to provide a charge path begins to compete with the
resistance to air and other charge sources could influence the input causing the logic state to be
unstable when the button is not pressed.

RESET (MCLR)

The two buttons on the Fubarino are examples of input pins of the uC being pulled-up with a SPST
switch to ground. The RESET button on the Fubarino is tied to the MCLR pin of the PIC32 and the PRG
(program) button is tied to PIC32 I/O port (pin RE7 of the Fubarino SD and pin RAS8 of the Fubarino Mini).
On the Fubarino SD PIC32 pin RE7 has been abstracted to pin 23. On the Fubarino Mini PIC32 pin RA8

has been abstracted to pin 16.

33V gy oD
£i EPE
PROGRAM — / PROGRAM =
s RE7 i
. . 1 i3 , RART
|E N 4
PTS525SM10SMTR LFS
33V o
3.3V
S25 !
RESET < aftpn |GEE /
m rm
g | MCLR 1 ki3 MCLR
o kT
PTS5255M10SMTR LFS
6 \]_D GND
Fubarino SD Fubarino Mini
Ic1
12 PMDSRES PMD4/RES g; 35
2 PpsrEs PMD3RES [0 —OF
—_— 2 ruormer PMD2RE2 |2 - w
2] sokzPmssicrRes PMDTRE! |2l e =]
2| soopmedicnare? PMCORED |-2—= Al
SDOZPMAZICN DRGE RF1 E
> 7 1 mR rro |28 RF 5
- 8| sszpmacicnit ros vREG Ly SI -
= 21710 VSS VCAPNVCORE [—2i——mrr — i
o e VoD CHIBRDT |2 S
I ansicrmsaveusoncnirres cmsroe [-oi—El0
e e PurDICH4RDS 52 £L2 GHD
12| ansicam+CrSRES OCSICSPMARICNIZRDY |22 -
4] anzican-icniRez ITxiOCHRDS |- a
15 PGEC AN FVREF-ICYREF-ICHGRE UiRwOCIRD2 | ! -0 114
PGED (ANDAYREF +CVREF +PMABICNZ/RED OTRTSIOCZRD VopF | 18pF] z
+
:EH PGEC2IANBIOCFARER SOSCOMICKICNORCH4 |2 ECM o o
E 12 { roeDzianzie? soscucntRets |- L13
i3 1 avop OCANTORDD
= ;D aS3 ICAPMCSA PRALA 4T 4RO :i
© 21 ensmzCTSICIOLTRSS SCLTICSPMCS2PMAT SINTSRDID |42 D
22 | ANSIC2OUTFMATRES OTCTSSDAUC2INTZRDS [
23] TMS I CICYREFOLT PHA1 3RE10 RTCCICINTIRDS [=
DO FAT ZREN vsE
(]
= = 2 ves oscaicLkoRcts |4 ﬁgg% LG a
e v OsClCLIRCT 2 [—22 —#
2T Tekimn 2Pmant BN 2 oo 2 — > . 12,:8 Hz
e ToEAM 3pMAIOREN3 D+RG2 IB: - p p
2| A 4TTRTSPMALHPMA FB14 D-Re3 (2 - Cl4 15
I AN SIOCFBFMALLFMADICHT 2RENS vise (22 = >
2] SDA2UZRKPMASICN TIRFS veus 122 SEe RS !
SCLZUZTHFMASICH SRFS USBIDRFS At =
10K 2 GMD

PICIZMA448F 256H-801/PT

Fubarino SD (refer to the Fubarino Mini schematic in Lab 2 button connections)

// ITES LAB3-2 Copyright 2013-18 ProLinear/PONTECH, Inc. //

When set to active low this causes the PIC32 to go into reset and restart the uC running at the beginning
of memory. On all boards compatible with Arduino IDE this code at this location is called a bootloader.
The Fubarino bootloader reads the state of the PRG button and if it is low causes the board to create a
USB serial port and wait for a program to be uploaded from Arduino IDE. If the PRG button is high the
bootloader code will just move on and run the user code.

To test the reset behavior an expanded blink sketch can be used to help us identify when we come out
of reset. Modify the example blink sketch to that the led blinks three times one second on and one
second off in the setup() and then in the loop() turns the led on for 0.25 seconds then off for 0.25
seconds. Your resultant program should look something like this:

void setup () {
// initialize the digital pin as an output.
// Pin 13 has an LED connected on most Arduino boards:
(LEDiBUILTII\‘, OUTPUT) ;

(LED_BUILTIN, HIGH); // set the LED on
(1000) ; // wait for a second
(LED_BUILTIN, LOW); // set the LED off
(1000) ; // wait for a second
(LED_BUILTIN, HIGH); // set the LED on
(1000) ; // wait for a second
(LED_BUILTIN, LOW); // set the LED off
(1000) ; // wait for a second
(LED_BUILTIN, HIGH); // set the LED on
(1000) ; // wait for a second
(LED_BUILTIN, LOW); // set the LED off
(1000) ; // wait for a second
}
void loop () {
(LED_BUILTIN, HIGH); // set the LED on
(250) ; // wait for a 1/4 second
(LED_BUILTIN, LOW); // set the LED off
(250) ; // wait for a 1/4 second

Compile your program and verify its operation. Test the program by pushing the reset button by itself
and then again while holding down the PRG button. Note that the LED blinks slowly three times then
goes into the loop when the PRG button is not pressed.

Check off

Call the instructor over to demonstrate your completed lab.
Be prepared to answer the following questions:

What usage other than getting to the bootloader might the RESET button be useful for?

// ITES LAB3-3 Copyright 2013-18 ProLinear/PONTECH, Inc. //

Part 2: Digital input - digitalRead()

Up until this point we have only been using pins of the microcontroller as output. To use a
microcontroller pin as an input we must first use the pinMode() to configure the pin. Next the pin state
can be read and stored in a variable using the digitalRead(). The following code reads the button pin on
the using the digitalRead() and saves the value read in the variable ‘value’. Next it writes out the value
stored in the ‘value’ variable to the PIN_OUT.

Copy the following code into the Arduino IDE then upload and test. Be sure to open the serial terminal
and view the serial output from the program.

uintlé_t PIN_OUT
uintlé t PIN_IN

2; // pin 1 for Fubarino Mini, pin 21 for Fubarino SD
3; // pin 16 for Fubarino Mini, pin 23 for Fubarino SD

void setup() {
Serial.begin(115200) ;
pinMode (PIN_OUT, OUTPUT); // Configure PIN OUT as OUTPUT
pinMode (PIN IN, INPUT); // Configure PIN IN as INPUT

}

void loop () {
uint8 t value;

value = digitalRead(PIN IN); // read PIN IN and store it in value
digitalWrite (PIN OUT, value); // write value out to PIN OUT
Serial.println(value, BIN);
delay (100);

}

Check off
Call the instructor over and demonstrate the running program.

Be prepared to answer the following questions:

Why does LED go off when pushing the button and come on when it is not pressed?

// ITES LAB3-4 Copyright 2013-18 ProLinear/PONTECH, Inc. //

Part 3: Logical and Bitwise Inversion
Change the following line in the previous program from this:

value = digitalRead(PIN IN); // read PIN IN and store it in value
To this:
value = !digitalRead(PIN IN); // read PIN IN and store it in value

This change introduces the logical not operator (!). This (!) operator logically inverts the value read with
the digitalRead() and inverts it. So if a true (1) value is read a false (0) value is stored in the ‘value’
variable and vice versa.

Upload and test the program.

Next change this:

value = !digitalRead(PIN_IN); // read PIN_IN and store it in value
To this:

value = ~digitalRead(PIN_IN); // read PIN IN and store it in value

Upload and look at the output on the serial terminal.

Check off
Call the instructor over and demonstrate the running program.

Be prepared to answer the following questions:
Why do you think the logical operator works and the bitwise operator does not?

Do the digitalRead() and digitalWrite() use bitwise or logical values?

// ITES LAB3-5 Copyright 2013-18 ProLinear/PONTECH, Inc. //

Part 4: Blink Decision

In the first lab we saw that the on-board LED of the Fubarino is connected to an abstracted pin (21 on
FubSD / 1 on FubMini) and that we were able to make it blink by setting it to an output. The PROGRAM
button that is used to put the Fubarino into the bootloader can be used as an input in our applications
as well.

The following program reads the state of the PROGRAM button and changes the blink rate depending on
weather the button is pressed or not.

/*

Blink with a Decision

*/
uintl6 t PIN OUT = 2; // pin 1 for Fubarino Mini, pin 21 for Fubarino SD
uintl6é t PIN IN = 3; // pin 16 for Fubarino Mini, pin 23 for Fubarino SD
void setup() {

pinMode (PIN_OUT, OUTPUT) ;
pinMode (PIN_ IN, INPUT);
}

void loop () {
digitalWrite (PIN OUT, !digitalRead(PIN OUT)); // toggle the LED

if (digitalRead (PIN IN) == LOW) { // Made decision
delay(200); // True condition
}
else {
delay (1000); // False condition
}
}
Analysis

Two global variables called PIN_OUT and PIN_IN have been created to make it simple to change the
input and output pins used in this program. The newly introduced function digitalRead allows us to
check the logic state of a pin. It can be used to detect both INPUT and OUTPUT pins. If an OUTPUT pin
is read the last value written to it is will be returned. If an INPUT pin is read the currently presented
voltage on the pin will be read. The following line of code now incorporates the digitalRead with the
digitalWrite to which allows us to toggle the pin state by use of the ! (logical not) operator.

digitalWrite (PIN OUT, !digitalRead(PIN OUT)); // toggle the LED

The next line of code is very different from anything we have seen up until now and uses an if statement
to check the result of the digitalRead() to make a decision.

if (digitalRead(PIN_IN) == LOW) { // Made decision

// ITES LAB3-6 Copyright 2013-18 ProLinear/PONTECH, Inc. //

The statement between the parenthesis in the above statement if true will run the first statement and if
false will run the statement after the else clause. The double equals (==) will evaluate the whether the
result of the digitalRead function is equivalent to the constant LOW.

Check off
Call the instructor over for a check off.

Be prepared to answer the following questions:

What is the purpose of the ! operator?

Part 5: Blink Decision with pull-ups
Change the input and output pin to use an external LED and an external switch with a pull-up resistor.

Check off
Call the instructor over for a check off.

Be prepared to change the pull up to a pull a pull down and re-demonstrate.

// ITES LAB3-7 Copyright 2013-18 ProLinear/PONTECH, Inc. //

Part 6: Blink Decision sequence

Wire up four LED's to pins 0-4 of the Fubarino. Modify the program so that it does nothing until a button
is pressed. When the button is pressed, successively light up one LED until all four are lit with a one
second delay between each light. Then wait one more second and shut off all LED's. If the button is
pressed again it will repeat the behavior described above.

Check off
When the circuit and program are working, call the instructor over for a check off.

Part 7: Shift Right Operator
The following functions are useful for setting reading and writing of four pins in a group (a nibble). The
next remaining parts of this lab will use these functions, you can add them to the top of your program.

void nibbleInit (uint8 t pin b3, uint8 t pin b2, uint8 t pin bl, uint8 t
pin b0, uint8 t mode)

{
pinMode (pin b3, mode

’

’

pinMode (pin_b2, mode

’

()

()
pinMode (pin_bl, mode);
pinMode (pin_ b0, mode)

}
uint8 t pinsToNibble (uint8 t pin b3, uint8 t pin b2, uint8 t pin bl, uint8 t
pin bO0)
{
uint8 t nibble;

nibble = digitalRead(pin b3) << 3 |
digitalRead (pin b2) << 2 |
digitalRead(pin bl) << 1 |
digitalRead(pin b0) << 0;

return nibble;

void nibbleToPins (uint8 t in, uint8 t pin b3, uint8 t pin b2, uint8 t pin bl,
uint8 t pin b0) {

// use bitwise & operator to create logic condition that is

// used to light bits as if in the same nibble.

digitalWrite(pin b0, in & 0b00000001) ;
digitalWrite(pin bl, in & 0b00000010);
digitalWrite(pin b2, in & 0b00000100);
digitalWrite(pin b3, in & 0b00001000) ;

// ITES LAB3-8 Copyright 2013-18 ProLinear/PONTECH, Inc. //

This sketch demonstrates the shift operator. With LED's still hooked up to outputs 0-3. Test the
following sketch:

uint8_t s; // shift bits

void setup() {
Serial.begin(115200);
nibbleInit (0,1,2,3, OUTPUT);

void loop () {

Serial.println ("looping");

s = 0x80;

while(s != 0x00)

{
nibbleToPins(s,0,1,2,3);
s = s > 1;
delay (1000) ;

Check off
Note that the time that the loop runs is about eight seconds, and that LED's are only lit for four out of
the eight seconds of the loop. What can be inferred from this?

Call the instructor over for check off when you get it working.

Part 8: Shift Left Operator
Change the direction of the shifting from left to right and modify the while loop logical condition so that
while loop only executes four times instead of eight as in the previous sections.

Check off
Call the instructor over for check off when you get it working.

// ITES LAB3-9 Copyright 2013-18 ProLinear/PONTECH, Inc. //

Part 9: Bitwise operators
This lab demonstrates bitwise logic operators by reading two groups of four switches and preforming a
logical operation on them. The result of the operation is displayed on LED’s and in the serial terminal.

If you look at the setup() you can see that pins 0-3 are configured as output. This is where we are going
to hook up the LED’s. Pins 4-7 and 8-11 are configured as inputs. These will be the switch inputs for our
program.

void setup () {
Serial.begin(115200) ;
nibbleInit(0, 1, 2, 3, OUTPUT);
nibbleInit (4, 5, 6, 7, INPUT);
nibbleInit (8, 9, 10, 11, INPUT);
delay (3000) ;
Serial.println("starting...");

void loop () {
uint8 t a, b;
uint8 t accumulator;

a pinsToNibble (4, 5, 6, 1)
b pinsToNibble (8, 9, 10, 11);
accumulator = a & b;

nibbleToPins (accumulator, 0, 1, 2, 3);
Serial.print (a, BIN);
11 & ");
b, BIN);
Serial.print (" = ");

Serial.print
Serial.print

(
(
(
(
Serial.print (accumulator, BIN);

Serial.println (" ");
delay(100);

Test the program by setting inputs 4-11 to binary values and verify the output on the LED's.

Check off
Modify the program to use a bitwise logic or operator. Verify it works then call the instructor over to
demonstrate the program.

// ITES LAB3-10 Copyright 2013-18 ProlLinear/PONTECH, Inc. //

Part 10: Logical Operators
The following code demonstrates logical operators.

void setup () {
Serial.begin(115200) ;
nibbleInit (0, 1, 2, 3, OUTPUT):;
nibbleInit (4, 5, 6, 7, INPUT);
nibbleInit (8, 9, 10, 11, INPUT);
delay (3000) ;
Serial.println("starting...");

void loop () {
uint8 t a, b;
uint8 t accumulator;

a = digitalRead (4);
b = digitalRead(8);
Serial.print ("a=");
Serial.print (a, BIN);
Serial.print (" b=");
Serial.print (b, BIN);

Serial.print (" a&&b=");

if(a && b) {
digitalWrite (0, HIGH) ;
Serial.print ("HIGH");

}

else {
digitalWrite (0, LOW) ;
Serial.print ("LOW ") ;

}

Serial.println(".");

delay (100);

}

Check off
Verify the program works then call the instructor over to demonstrate the program.

// ITES LAB3-11 Copyright 2013-18 ProlLinear/PONTECH, Inc. //

Part 10: Logical Expanded
Write a program that has two inputs A and B and four outputs W, X, Y and Z. Make the outputs have the
following behavior:

W =NOTA
X=ANAND B
Y=AORB
Z=AXORB

Call the instructor over for check off when you get it working.

Homework

Create a new function called byteToPins() that will output a byte in binary on 8 pins of the Fubarino.

Use this function to display a count from 0x00 to OxFF in binary on the LEDs connected to the Fubarino
as well as print out the value in hexadecimal in the serial terminal. As usual this homework is not
collected, but if you can get this program to work then you have a good understanding of the material, if
you cannot seek help.

Advanced: Find the gate capacitance of a typical GPIO input on a PIC32 uC by looking it up in the
datasheet. This is challenging.

// ITES LAB3-12 Copyright 2013-18 ProLinear/PONTECH, Inc. //

