
 
 

// ITES LAB3-1 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Lab 3 - Digital Input - Conditional Statements 

Part 1 - Pull-ups, Inputs and Resets 

How to connect a switch to a microcontroller input 

When a pin on the microcontroller is configured as an input using the pinMode(pin,INPUT) command it 

puts the pin into a high impedance and is said to be floating if the pin is not connected to any other part 

of the circuit. A floating pin is due to the nature of the insulated gate of the FET not having any current 

path.  If there is no current path then a static charge can build up on it.  If 

there is no charge on a floating pin it will be interpreted as a logic 0 but with 

a little stray charge the pin will be interpreted as a logic 1.  If we wish to 

hook up a simple SPST (Single Pole Single Throw) switch to the 

microcontroller we need to force the insolated gate to a known charge state.  

That is done by connecting the pin to ground or Vdd with a resistor. (Vdd is 

the voltage that the microcontroller runs at and typically will be either 

+3.3VDC or +5VDC but other voltages are possible). When a resistor ties an 

input pin to a voltage level it is called either a pull-down (when connected to 

ground) or pull-up (when connected to Vdd).  In the case of a pull up a SPST 

(single pole single throw) switch can then be connected to the uC pin to 

ground.  This way when the switch is open the uC pin sees the voltage at Vdd 

(logic 1) and when the switch is closed the uC pin sees 0V (ground).  The 

circuit to the right is an example of a typical pull-up with a N.O. (Normally Open) SPST switch to ground.  

This circuit results in a logic 1 on the uC pin when the button is not pressed and a logic 0 when the 

button is pressed. Reversing the place of the resistor and switch in this circuit will create a pull-down 

equivalent and the logic will be reversed. 

How to choose the resistor value for the pull-up or pull-down 

Essentially any resistor value that is significantly greater than zero will work, however, thanks to ohms 

law and the RC time constants practical values are usually between 2K Ohms - 100K Ohms.  Values too 

close to zero will cause excessive power draw since our power supply voltage (V) is fixed and the inverse 

relationship of resistance (R) to power (P):  

𝑃 =
𝑉

𝑅

2

 

Since the insolating gate of the transistor acts like a charging a very small capacitor (gate capacitance C) 

when the switch is open excessive values of R will cause the time (approximately 5𝜏) that it takes the 

charge to build up on the FET gate to be slow and limit our frequency response (which for a human 

pushing a button can typically be ignored). 

𝜏 = 𝑅𝐶 



 
 

// ITES LAB3-2 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

If values increase further then the resistors ability to provide a charge path begins to compete with the 

resistance to air and other charge sources could influence the input causing the logic state to be 

unstable when the button is not pressed.  

RESET (𝑴𝑪𝑳𝑹̅̅ ̅̅ ̅̅ ̅̅ ̅) 

The two buttons on the Fubarino are examples of input pins of the uC being pulled-up with a SPST 

switch to ground.  The RESET button on the Fubarino is tied to the 𝑀𝐶𝐿𝑅̅̅ ̅̅ ̅̅ ̅̅  pin of the PIC32 and the PRG 

(program) button is tied to PIC32 I/O port (pin RE7 of the Fubarino SD and pin RA8 of the Fubarino Mini).  

On the Fubarino SD PIC32 pin RE7 has been abstracted to pin 23.  On the Fubarino Mini PIC32 pin RA8 

has been abstracted to pin 16. 

                        

Fubarino SD                                                 Fubarino Mini 

 

Fubarino SD (refer to the Fubarino Mini schematic in Lab 2 button connections) 



 
 

// ITES LAB3-3 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

When set to active low this causes the PIC32 to go into reset and restart the uC running at the beginning 

of memory.  On all boards compatible with Arduino IDE this code at this location is called a bootloader.  

The Fubarino bootloader reads the state of the PRG button and if it is low causes the board to create a 

USB serial port and wait for a program to be uploaded from Arduino IDE.  If the PRG button is high the 

bootloader code will just move on and run the user code. 

To test the reset behavior an expanded blink sketch can be used to help us identify when we come out 

of reset.  Modify the example blink sketch to that the led blinks three times one second on and one 

second off in the setup() and then in the loop() turns the led on for 0.25 seconds then off for 0.25 

seconds.  Your resultant program should look something like this: 

void setup() {                 

  // initialize the digital pin as an output. 

  // Pin 13 has an LED connected on most Arduino boards: 

  pinMode(LED_BUILTIN, OUTPUT);      

  digitalWrite(LED_BUILTIN, HIGH);   // set the LED on 

  delay(1000);                       // wait for a second 

  digitalWrite(LED_BUILTIN, LOW);    // set the LED off 

  delay(1000);                       // wait for a second 

  digitalWrite(LED_BUILTIN, HIGH);   // set the LED on 

  delay(1000);                       // wait for a second 

  digitalWrite(LED_BUILTIN, LOW);    // set the LED off 

  delay(1000);                       // wait for a second 

  digitalWrite(LED_BUILTIN, HIGH);   // set the LED on 

  delay(1000);                       // wait for a second 

  digitalWrite(LED_BUILTIN, LOW);    // set the LED off 

  delay(1000);                       // wait for a second 

} 

 

void loop() { 

  digitalWrite(LED_BUILTIN, HIGH);   // set the LED on 

  delay(250);                        // wait for a 1/4 second 

  digitalWrite(LED_BUILTIN, LOW);    // set the LED off 

  delay(250);                        // wait for a 1/4 second 

} 

 

Compile your program and verify its operation. Test the program by pushing the reset button by itself 

and then again while holding down the PRG button.  Note that the LED blinks slowly three times then 

goes into the loop when the PRG button is not pressed. 

Check off 
Call the instructor over to demonstrate your completed lab. 

Be prepared to answer the following questions: 

What usage other than getting to the bootloader might the RESET button be useful for? 



 
 

// ITES LAB3-4 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 2: Digital input – digitalRead() 
Up until this point we have only been using pins of the microcontroller as output. To use a 

microcontroller pin as an input we must first use the pinMode() to configure the pin.  Next the pin state 

can be read and stored in a variable using the digitalRead().  The following code reads the button pin on 

the using the digitalRead() and saves the value read in the variable ‘value’.  Next it writes out the value 

stored in the ‘value’ variable to the PIN_OUT. 

Copy the following code into the Arduino IDE then upload and test.  Be sure to open the serial terminal 

and view the serial output from the program. 

uint16_t PIN_OUT = 2; // pin  1 for Fubarino Mini, pin 21 for Fubarino SD 

uint16_t PIN_IN  = 3; // pin 16 for Fubarino Mini, pin 23 for Fubarino SD 

 

void setup() { 

  Serial.begin(115200); 

  pinMode(PIN_OUT, OUTPUT);  // Configure PIN_OUT as OUTPUT 

  pinMode(PIN_IN, INPUT);    // Configure PIN_IN as INPUT 

} 

 

void loop() { 

  uint8_t value; 

   

  value = digitalRead(PIN_IN);  // read PIN_IN and store it in value 

  digitalWrite(PIN_OUT, value); // write value out to PIN_OUT 

  Serial.println(value, BIN); 

  delay(100); 

} 

Check off 

Call the instructor over and demonstrate the running program. 

Be prepared to answer the following questions: 

Why does LED go off when pushing the button and come on when it is not pressed? 

  



 
 

// ITES LAB3-5 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 3: Logical and Bitwise Inversion 
Change the following line in the previous program from this: 

  value = digitalRead(PIN_IN);  // read PIN_IN and store it in value 

 

To this: 

  value = !digitalRead(PIN_IN);  // read PIN_IN and store it in value 

 

This change introduces the logical not operator (!).  This (!) operator logically inverts the value read with 

the digitalRead() and inverts it.  So if a true (1) value is read a false (0) value is stored in the ‘value’ 

variable and vice versa. 

Upload and test the program. 

Next change this: 

  value = !digitalRead(PIN_IN);  // read PIN_IN and store it in value 

 

To this: 

  value = ~digitalRead(PIN_IN);  // read PIN_IN and store it in value 

 

Upload and look at the output on the serial terminal. 

Check off 

Call the instructor over and demonstrate the running program. 

Be prepared to answer the following questions: 

Why do you think the logical operator works and the bitwise operator does not? 

Do the digitalRead() and digitalWrite() use bitwise or logical values? 

  



 
 

// ITES LAB3-6 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 4: Blink Decision 
In the first lab we saw that the on-board LED of the Fubarino is connected to an abstracted pin (21 on 

FubSD / 1 on FubMini) and that we were able to make it blink by setting it to an output.  The PROGRAM 

button that is used to put the Fubarino into the bootloader can be used as an input in our applications 

as well. 

The following program reads the state of the PROGRAM button and changes the blink rate depending on 

weather the button is pressed or not. 

/* 

  Blink with a Decision 

 */ 

uint16_t PIN_OUT = 2; // pin  1 for Fubarino Mini, pin 21 for Fubarino SD 

uint16_t PIN_IN  = 3; // pin 16 for Fubarino Mini, pin 23 for Fubarino SD 

 

void setup() {           

  pinMode(PIN_OUT, OUTPUT); 

  pinMode(PIN_IN, INPUT); 

} 

 

void loop() { 

  digitalWrite(PIN_OUT, !digitalRead(PIN_OUT)); // toggle the LED 

  if( digitalRead(PIN_IN) == LOW ) {            // Made decision 

    delay(200);                                 // True condition 

  } 

  else { 

    delay(1000);                                // False condition  

  } 

} 

Analysis 

Two global variables called PIN_OUT and PIN_IN have been created to make it simple to change the 

input and output pins used in this program.  The newly introduced function digitalRead allows us to 

check the logic state of a pin.  It can be used to detect both INPUT and OUTPUT pins.  If an OUTPUT pin 

is read the last value written to it is will be returned.  If an INPUT pin is read the currently presented 

voltage on the pin will be read.  The following line of code now incorporates the digitalRead with the 

digitalWrite to which allows us to toggle the pin state by use of the ! (logical not) operator. 

  digitalWrite(PIN_OUT, !digitalRead(PIN_OUT)); // toggle the LED 

 

The next line of code is very different from anything we have seen up until now and uses an if statement 

to check the result of the digitalRead() to make a decision. 

  if( digitalRead(PIN_IN) == LOW ) {            // Made decision 

 



 
 

// ITES LAB3-7 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

The statement between the parenthesis in the above statement if true will run the first statement and if 

false will run the statement after the else clause.  The double equals (==) will evaluate the whether the 

result of the digitalRead function is equivalent to the constant LOW. 

Check off 

Call the instructor over for a check off. 

Be prepared to answer the following questions: 

What is the purpose of the ! operator? 

Part 5: Blink Decision with pull-ups 
Change the input and output pin to use an external LED and an external switch with a pull-up resistor. 

Check off 

Call the instructor over for a check off. 

Be prepared to change the pull up to a pull a pull down and re-demonstrate. 

  



 
 

// ITES LAB3-8 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 6: Blink Decision sequence 
Wire up four LED's to pins 0-4 of the Fubarino. Modify the program so that it does nothing until a button 

is pressed.  When the button is pressed, successively light up one LED until all four are lit with a one 

second delay between each light.  Then wait one more second and shut off all LED's. If the button is 

pressed again it will repeat the behavior described above. 

Check off 

When the circuit and program are working, call the instructor over for a check off. 

Part 7:  Shift Right Operator 
The following functions are useful for setting reading and writing of four pins in a group (a nibble). The 

next remaining parts of this lab will use these functions, you can add them to the top of your program. 

void nibbleInit(uint8_t pin_b3, uint8_t pin_b2, uint8_t pin_b1, uint8_t 

pin_b0, uint8_t mode) 

{ 

  pinMode(pin_b3, mode); 

  pinMode(pin_b2, mode); 

  pinMode(pin_b1, mode); 

  pinMode(pin_b0, mode); 

} 

uint8_t pinsToNibble(uint8_t pin_b3, uint8_t pin_b2, uint8_t pin_b1, uint8_t 

pin_b0) 

{ 

  uint8_t nibble; 

  nibble = digitalRead(pin_b3) << 3 | 

           digitalRead(pin_b2) << 2 | 

           digitalRead(pin_b1) << 1 | 

           digitalRead(pin_b0) << 0; 

  return nibble; 

} 

 

void nibbleToPins(uint8_t in, uint8_t pin_b3, uint8_t pin_b2, uint8_t pin_b1, 

uint8_t pin_b0) { 

  // use bitwise & operator to create logic condition that is 

  // used to light bits as if in the same nibble. 

  digitalWrite(pin_b0, in & 0b00000001); 

  digitalWrite(pin_b1, in & 0b00000010); 

  digitalWrite(pin_b2, in & 0b00000100); 

  digitalWrite(pin_b3, in & 0b00001000); 

} 

 

  



 
 

// ITES LAB3-9 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

This sketch demonstrates the shift operator.  With LED's still hooked up to outputs 0-3.  Test the 

following sketch: 

uint8_t s; // shift bits 

 

void setup() { 

  Serial.begin(115200); 

  nibbleInit(0,1,2,3, OUTPUT); 

} 

 

void loop() { 

  Serial.println("looping"); 

  s = 0x80; 

  while( s != 0x00 ) 

  { 

    nibbleToPins(s,0,1,2,3); 

    s = s >> 1; 

    delay(1000); 

  } 

} 

 

Check off 

Note that the time that the loop runs is about eight seconds, and that LED's are only lit for four out of 

the eight seconds of the loop.  What can be inferred from this? 

Call the instructor over for check off when you get it working. 

Part 8: Shift Left Operator 
Change the direction of the shifting from left to right and modify the while loop logical condition so that 

while loop only executes four times instead of eight as in the previous sections. 

Check off 

Call the instructor over for check off when you get it working. 

  



 
 

// ITES LAB3-10 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 9: Bitwise operators 
This lab demonstrates bitwise logic operators by reading two groups of four switches and preforming a 

logical operation on them. The result of the operation is displayed on LED’s and in the serial terminal. 

If you look at the setup() you can see that pins 0-3 are configured as output. This is where we are going 

to hook up the LED’s. Pins 4-7 and 8-11 are configured as inputs. These will be the switch inputs for our 

program. 

void setup() { 

  Serial.begin(115200); 

  nibbleInit(0,  1,  2,  3, OUTPUT); 

  nibbleInit(4,  5,  6,  7, INPUT); 

  nibbleInit(8,  9, 10, 11, INPUT); 

  delay(3000); 

  Serial.println("starting..."); 

} 

 

void loop() { 

  uint8_t a, b; 

  uint8_t accumulator; 

  

  a = pinsToNibble(4,  5,  6,  7); 

  b = pinsToNibble(8,  9, 10, 11); 

  accumulator = a & b; 

  nibbleToPins(accumulator, 0, 1, 2, 3); 

 

  Serial.print(a, BIN); 

  Serial.print(" & "); 

  Serial.print(b, BIN); 

  Serial.print(" = "); 

  Serial.print(accumulator, BIN); 

  Serial.println(" ");   

  delay(100); 

} 

 

Test the program by setting inputs 4-11 to binary values and verify the output on the LED's. 

Check off 

Modify the program to use a bitwise logic or operator.  Verify it works then call the instructor over to 

demonstrate the program. 

  



 
 

// ITES LAB3-11 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 10: Logical Operators 
The following code demonstrates logical operators. 

void setup() { 

  Serial.begin(115200); 

  nibbleInit(0,  1,  2,  3, OUTPUT); 

  nibbleInit(4,  5,  6,  7, INPUT); 

  nibbleInit(8,  9, 10, 11, INPUT); 

  delay(3000); 

  Serial.println("starting..."); 

} 

 

void loop() { 

  uint8_t a, b; 

  uint8_t accumulator; 

  

  a = digitalRead(4); 

  b = digitalRead(8); 

  Serial.print("a=");   

  Serial.print(a, BIN);   

  Serial.print(" b=");   

  Serial.print(b, BIN); 

 

  Serial.print (" a&&b=");   

  if( a && b ) { 

    digitalWrite(0, HIGH); 

    Serial.print ("HIGH");   

  } 

  else { 

    digitalWrite(0, LOW); 

    Serial.print("LOW ");   

  } 

  Serial.println(".");   

  delay(100); 

} 

Check off 

Verify the program works then call the instructor over to demonstrate the program. 

  



 
 

// ITES LAB3-12 Copyright 2013-18 ProLinear/PONTECH, Inc. // 

Part 10: Logical Expanded 
Write a program that has two inputs A and B and four outputs W, X, Y and Z.  Make the outputs have the 

following behavior: 

W = NOT A 

X = A NAND B 

Y = A OR B 

Z = A XOR B 

Call the instructor over for check off when you get it working. 

Homework 
Create a new function called byteToPins() that will output a byte in binary on 8 pins of the Fubarino.  

Use this function to display a count from 0x00 to 0xFF in binary on the LEDs connected to the Fubarino 

as well as print out the value in hexadecimal in the serial terminal.  As usual this homework is not 

collected, but if you can get this program to work then you have a good understanding of the material, if 

you cannot seek help. 

 

Advanced: Find the gate capacitance of a typical GPIO input on a PIC32 uC by looking it up in the 

datasheet.  This is challenging. 


