

 //1//

Lab 9 – USB – Universal Serial Bus

Goals and limitations
A full understanding of USB is beyond the scope of a single six-hour treaty. The USB 3.2 Specification is a

518 page document and includes many supplementary documents to fully describe the complete

standard.

Utilize some of USB features in the chipKIT-core.

Gain some insight into the complexities of USB.

Where does USB come from?
USB is a standard that is maintained by the “USB Implementers Form, Inc.” or USB-IF. USB-IF is a non-

profit organization founded by the group of companies that developed the Universal Serial Bus

specification. The USB-IF was formed to provide a support organization and forum for the advancement

and adoption of Universal Serial Bus technology. The Forum facilitates the development of high-quality

compatible USB peripherals (devices) and promotes the benefits of USB and the quality of products that

have passed compliance testing. Some of the many activities that the USB-IF supports include:

• USB Compliance Workshops

• USB Compliance Test Development

• www.usb.org Web site

• USB pavilions at Computex, IDF, and other events

• Marketing programs and collateral materials, such as retail newsletters, retail salespeople

training, store end-caps, etc.

• USB Developer Conferences

At the time of this writing the USB-IF, Inc. Board of Directors is composed of the following companies

and their designated representative Directors:

• Apple - Dave Conroy

• HP Inc. - Alan Berkema

• Intel Corporation - Brad Saunders

• Microsoft Corporation - Toby Nixon

• Renesas Electronics - Philip Leung

• STMicroelectronics - Joel Huloux

• Texas Instruments - Anwar Sadat

 //2//

USB an Evolving Standard
Development began in 1994 by Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel with the goal to

make it fundamentally easier to connect external devices to PCs by replacing the multitude of

connectors at the back of PCs, addressing the usability issues of existing interfaces, and simplifying

software configuration of all devices connected to USB, as well as permitting greater data rates for

external devices.

First integrated circuits supporting USB were produced by Intel in 1995.

Microsoft Windows 95, OSR 2.1 provided OEM support for the devices.

USB 1.1 was the first widely used version of USB. The 12 Mbit/s data rate was intended for higher-speed

devices such as disk drives, and the lower 1.5 Mbit/s rate for low data rate devices such as joysticks.

Apple Inc.'s iMac was the first mainstream product with USB and the iMac's success popularized USB

itself.

Following Apple's design decision to remove all legacy ports from the iMac, many PC manufacturers

began building legacy-free PCs, which led to the broader PC market using USB as a standard.

Hewlett-Packard, Intel, Lucent Technologies (now Nokia), NEC, and Philips jointly led the initiative to

develop a higher data transfer rate, with the resulting specification achieving 480 Mbit/s, 40 times as

fast as the original USB 1.1 specification.

As of 2008, approximately 6 billion USB ports and interfaces were in the global marketplace, and about 2

billion were being sold each year.

Release
name

Release
date

Maximum
transfer rate

Note

USB 0.8 Dec-94

Prerelease

USB 0.9 Apr-95

Prerelease

USB 0.99 Aug-95

Prerelease

USB 1.0-RC Nov-95

Release Candidate

USB 1.0 Jan-96 Full Speed (12 Mbit/s)

USB 1.1 Aug-98 Full Speed (12 Mbit/s)

USB 2.0 Apr-00 High Speed (480 Mbit/s)

USB 3.0 Nov-08 SuperSpeed (5 Gbit/s) Also referred to as USB 3.1 Gen 1 and USB 3.2
Gen 1x1

USB 3.1 Jul-13 SuperSpeed+ (10 Gbit/s) Also referred to as USB 3.1 Gen 2 and USB 3.2
Gen 2x1

USB 3.2 Sep-17 SuperSpeed+ (20 Gbit/s) Includes new USB 3.2 Gen 1x2 and
USB 3.2 Gen 2x2 multi-link modes

 //3//

Elements of a USB System

Star Topology, maximum of 127 devices per host port, counting the host (126 devices)

HUB Chaining, maximum depth of 5 HUBS. (7 Tier’s where the Host is Tier 1)

USB is a “Single Master + Multiple Slaves” polled bus

All Transactions are initiated by the Host

Devices cannot talk to one another

Shared USB bandwidth

Devices respond to the Host

Each Device is polled by the Host

 //4//

Host – Master, considered upstream

Manages and controls the bus

Initiates all transactions

Automatically detects all device insertions and extractions

Enumerates all devices connected and matches them with drivers

Typical requirements for a host

Host is usually a PC or a Smartphone

USB Host Controller

USB drivers for identifying and enumerating USB devices

PIC32’s can be USB Host (but we are not discussing this here)

Embedded Host

Embedded Host connects to a known number of USB Peripheral Devices – USB Drivers fixed in firmware

• Advantage: Smaller, less complex embedded firmware

Example: Remote Temperature Data Logger

• Download data to USB Flash Drive

• Act as Host when connected to Flash drive but …

• Not connected directly to PC Host

Device – Slave, considered downstream

Responds to Host, cannot initiate transactions

Requires drivers to be recognized by the Host

Hardware/Firmware to respond to Host

Microchip’s PIC® MCUs are used in USB peripheral devices

USB Hubs

Connects Additional devices to USB Bus

Max 5 deep Hubs on Root Hub

Provides power to devices connected

Most Hubs use ASIC (Application Specific Integrated Circuit) controllers

USB On-The-Go (OTG) and Dual Role

USB On-The-Go (OTG) allows application to operate as Host or Device

• Smartphone (Device) connected to PC (Host)

• Smartphone (Host) connected to Thumb drive (Device)

• Smartphone in Dual Role Mode

Smartphone connected to PDA, host and device roles can switch

• Smartphone in OTG mode

 //5//

USB Physical Interface

USB 1.1 / 2.0 Signals

Pin Signal Color Description

1 VCC RED +5V, power lines from which USB devices can draw power

2 D- WHITE Data -, Twisted pair, differential mode communication lines

3 D+ GREEN Data +, for excellent noise immunity of data

4 GND BLACK Ground, power lines from which USB devices can draw power

USB 3.0 Signals

Pin Color
Signal name

Description
A connector B connector

Shell N/A Shield Metal housing

1 Red VBUS Power

2 White D−
USB 2.0 differential pair

3 Green D+

4 Black GND Ground for power return

5 Blue StdA_SSRX− StdB_SSTX−
SuperSpeed transmitter differential pair

6 Yellow StdA_SSRX+ StdB_SSTX+

7 N/A GND_DRAIN Ground for signal return

8 Purple StdA_SSTX− StdB_SSRX−
SuperSpeed receiver differential pair

9 Orange StdA_SSTX+ StdB_SSRX+

The USB 3.0 Powered-B connector has two additional pins for power and ground.

10

N/A

DPWR Power provided to device (Powered-B only)

11 DGND Ground for DPWR return (Powered-B only)

 //6//

USB Device Power

Self-Powered

On board battery or external power source such as line voltage. Does not (should not) draw power form

+5V DC on USB connection.

Bus Powered

Explicitly draws power from USB connection.

100mA at 5VDC (500mW)

Maximum power that can be drawn from USB connection without requesting more. Current draw of

100mA is consider one-unit load.

500mA at 5VDC (2.5W)

Must be requested from host and granted before allowed to draw this much power.

>500mA for USB 3.0 (maximum draw depending on host)

Must be requested from host and granted before allowed to draw this much power.

Power down mode

Must draw less than 2.5mA at 5VDC (12.5mW), preferred less than 1mA at 5VDC (5mW)

Speeds
Description Abbreviation Bandwidth (Speed) USB Version Introduced

Low Speed LS 1.5 Mbit/s (187.5 KB/s) 1.0

Full Speed FS 12 Mbit/s (1.5 MB/s) 1.0

High Speed HS 480 Mbit/s (60 MB/s) 2.0

Super Speed SS 5 Gbit/s (625 MB/s) 3.0

Super Speed+ SS+ 10 Gbit/s (1.25 GB/s) 3.1

Super Speed+ SS+ 20 Gbit/s (2.5 GB/s) 3.2

Connectors

Image from cablewholesale.com (plugs on top, sockets on bottom)

 //7//

USB Connections on the Fubarino Mini / Fubarino SD

 //8//

Microchip’s PIC32 MCUs USB Module (Serial Interface Engine SIE)

• Support USB 2.0 Low and Full Speed

• On-chip USB/OTG (on-the-go) Transceivers, Voltage Regulator and pull-up resistors

• On chip PLL for USB clock

• USB Dual Access RAM

• Easy hardware hookup from PIC MCU to USB Port

• Serializes and deserializes USB data

• Encodes and decodes NRZI data

• Handles bit stuffing

• Checks CRC to validate data packet

• Detects bus signaling events and notifies the CPU through interrupts

• Handles USB transactions

• Handles handshaking protocal

 //9//

USB Peripheral Device Classes

HID – Human Interface Device

Mouse, keyboard, Joystick, Dataglove and others

MSD – Mass Storage Device

Floppy Drive, CD Drive, Thumb Drive

CDC – Communications Device Class

Ethernet Adapter

ACM – Asynchronous Communications

RS-232 / Modem replacement

Vendor Classes

Many More Classes

VID/PID

• VID: Vendor Identification, 16-bit number

o Required to market your product

o http://www.usb.org/developers/vendor

o USD $5000 (one-time fee as of April 2018)

o Additional annual licensing fees if you want to use the USB logos

o Technical and legal trouble if not using an approved VID

• PID: Product Identification, 16-bit number

o Microchip has a sub-licensing program where they will assign you a VID/PID from there

VID group for use with your product (if you exceed 10,000 units you are required to get

your own VID/PID from the USB-IF)

• Every product line is required to have a unique combination of VID and PID.

http://www.usb.org/developers/vendor

 //10//

Protocol

Descriptors

Data sent from a device to the host to identify what its function is.

Descriptors are typically stored in non-volatile (flash) memory

Types of descriptors

Device

One per device

Product information

How many configuration descriptors

Configuration

Typically, one per device but there can be more than one.

How many interfaces

Interface

Defines the USB Classes this device has. One interface per class.

Endpoint

Endpoints required per class are defined in the specific USB Class specification.

String

Contains the strings referenced by other descriptors.

Arrays of two byte Unicode characters.

 //11//

Descriptors Example

Transfer Types

Transfer /
Endpoint Type

Polling Interval % Reserved
BW/Frame for all
transfers of this
type

Max. #
Data Bytes / Frame /
Endpoint (Max#
transactions per frame @
Max Ep Size)*

Data
Integrity

Interrupt Fixed, Periodic 90 64 (1 x 64) Yes

Isochronous Fixed, Periodic 90 1023 (1 x 1023) No

Bulk Variable, Uses
Free Bandwidth

0 1216 (19 x 64) Yes

Control Variable 10 832 (13 x 64) Yes

* Assumes transfers use maximum packet sizes allowed per Ep type

Devices classes cannot use the Control transfer type. Control is used for enumeration only.

 //12//

Endpoint 0 and Enumeration
See Chapter 9 in USB 2.0 Spec for more information.

 //13//

Compliance Testing
Must pass to use USB logo

It cost money probably >$1,500 (2008 price, I don’t have

current pricing)

Ch 9 and other USB Firmware

USB Protocol Analyzer

“USBCV”USB Command Verifier

Test device for conformance to Ch9, Hub, HID, MSD and Video Class Specifications

www.usb.org/developers/tools

Electrical Signal Quality

Power Management

For USB Compliance: Independent Test Labs

For Device ‘Sanity Check’: USB “Plugfest”

For USB Compliance Testing:

Must submit a compliance checklist

http://www.usb.org/developers/compliance

Download “Peripheral Checklist”

TID: Test ID

Use certified USB receptacle and cable for testing

Know the TID of your components

All USB PIC MCUs have a TID number. Get it at www.microchip.com/usb

Probably a good idea to take a look at the checklist even before starting your design!

http://www.usb.org/developers/tools
http://www.usb.org/developers/compliance
http://www.microchip.com/usb

 //14//

Details we are not going to talk about

Line states
Detached

Attached

Idle

Device states / Enumeration
Attached –devices has been discovered

Powered – device is functioning

Addressed – device has give a 7-bit address

Configured – host is able to communicate with device

Suspended – device is in a minimum power draw state (mostly for bus powered devices)

Physical Interface
Voltage levels of data transfer

Half Duplex, Differential NRZI (non-return to zero inverted)

Asynchronous (with clock recovery)

Packets
8-bit SYNC sequence

0 to N 8-bit data sequence

8-bit packet identifier (PID)

2-bit end of packet identifier

Packet Types
Token

IN, OUT, SOF, SETUP

Data packets

DATA0, DATA1

Handshake packets

ACK, NACK, STALL

Special packets

ERR, PRE, PING, SPLIT

Read

IN (HOST) -> DATAx (DEVICE) -> ACK (HOST)

Write

OUT (HOST) -> DATAx (HOST) -> ACK (DEVICE)

Endpoints
Sinks or sources of data and operate in a single direction

Host to device (16 OUT endpoints), Device to host (16 IN endpoints)

The zero endpoint controls bus management in both directions.

 //15//

USB Examples Program
In order to run and test USB Example code we need to turn on the USB libraries for the chipKIT boards.

The is accomplished from the tools menu by selecting the USB Devices pop out then selecting “Serial,

Keyboard & Mouse” option as shown below.

Keyboard

Keyboard API

The USB Keyboard API is documented on the Arduion.cc web site here:

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/

The available functions are listed below.

Keyboard.begin()

Keyboard.end()

Keyboard.press ()

Keyboard.release()

Keyboard.releaseAll()

Keyboard.print()

Keyboard.println()

Keyboard.write()

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/

 //16//

Examples

KeyboardLogout

Send the keyboard sequence to log you out of your computer.

KeyboardMessage

Send a text string to the USB host computer as a USB keyboard.

KeyboardReprogram

Reprogram an Arduino using IDE keystrokes. This sketch will not work (completely) with a Fubarino

since the board need to be manually reset into to the bootloader and the COM port changed in order for

a new program to be received.

KeyboardSerial

Create both a USB CDC-ACM Serial port and a USB Keyboard on the same device. Characters received

over the USB CDC-ACM port are then retransmitted as keystrokes to the PC.

 //17//

Keyboard Modifiers

Keyboard modifiers can be used with the Keyboard.press() to send special keystrokes to the USB Host

computer by using the predefined macro that is part of the USB Keyboard API. The table below lists all

the keyboard modifiers that are available for use in the sketch.

KEY HEXADECIMAL VALUE DECIMAL VALUE

KEY_LEFT_CTRL 0x80 128

KEY_LEFT_SHIFT 0x81 129

KEY_LEFT_ALT 0x82 130

KEY_LEFT_GUI 0x83 131

KEY_RIGHT_CTRL 0x84 132

KEY_RIGHT_SHIFT 0x85 133

KEY_RIGHT_ALT 0x86 134

KEY_RIGHT_GUI 0x87 135

KEY_UP_ARROW 0xDA 218

KEY_DOWN_ARROW 0xD9 217

KEY_LEFT_ARROW 0xD8 216

KEY_RIGHT_ARROW 0xD7 215

KEY_BACKSPACE 0xB2 178

KEY_TAB 0xB3 179

KEY_RETURN 0xB0 176

KEY_ESC 0xB1 177

KEY_INSERT 0xD1 209

KEY_DELETE 0xD4 212

KEY_PAGE_UP 0xD3 211

KEY_PAGE_DOWN 0xD6 214

KEY_HOME 0xD2 210

KEY_END 0xD5 213

KEY_CAPS_LOCK 0xC1 193

KEY_F1 0xC2 194

KEY_F2 0xC3 195

KEY_F3 0xC4 196

KEY_F4 0xC5 197

KEY_F5 0xC6 198

KEY_F6 0xC7 199

KEY_F7 0xC8 200

KEY_F8 0xC9 201

KEY_F9 0xCA 202

KEY_F10 0xCB 203

KEY_F11 0xCC 204

KEY_F12 0xCD 205

 //18//

Mouse

Mouse API

The USB Mouse API is documented on the Arduion.cc web site here:

https://www.arduino.cc/reference/en/language/functions/usb/mouse/

The available functions are listed below.

Mouse.begin()

Mouse.end()

Mouse.press()

Mouse.release()

Mouse.isPressed()

Mouse.click()

Mouse.move(x, y, wheel)

Parameters

button: which mouse button to press - char

MOUSE_LEFT (default)

MOUSE_RIGHT

MOUSE_MIDDLE

https://www.arduino.cc/reference/en/language/functions/usb/mouse/

 //19//

ButtonMouseControl

Make mouse moves with buttons presses on the control board.

JoystickMouseControl

Use analogRead() of ADC to control mouse position sent to the USB Host computer.

KeyboardAndMouseControl

Implements a combined USB Mouse and USB Keyboard in a single embedded program.

Source documentation used to for these notes
Allusb.com

en.wikipedia.org/wiki/USB (2018-04-22)

Usb.org

USB 2.0 Specification from USB.org

USB 3.0 Specification from USB.org

USB 3.1 Specification from USB.org

USB 3.2 Specification from USB.org

Microchip Masters 2008 USB Class Material

 //20//

Part 1 – USB -> Keyboard -> KeyboardMessage
IMPORTANT: To use any of the USB features of the chipKIT-core other than serial communications

custom descriptors need to be activated from the Tools->USB Devices: menu in the Arudino IDE. This is

accomplished by selecting the Serial, Keyboard & Mouse option. Once this is selected you can write

programs that tell the USB Host computer that the USB device attached can act as any combination of

Serial, Keyboard or Mouse.

Open the KeyboardMessage example program found in the File -> Examples -> 09.USB -> Keyboard

menu. Modify the value of the buttonPin const int variable to match the on-board program button of

the Fubrino that you are using. Recall that the program button on the Fubarnio Mini is pin 16 and on

the Fubrino SD is pin 23. Also, the PIN_BTN1 macro can be used for either board.

Upload the program and test it by opening notepad or any other text editor you have on your system.

Click on the edit area of the text editor and press the program button on the Fubarino several times to

view the functionality of the program.

Analysis

The Keyboard.begin() initializes the USB Keyboard class.

The Keyboard.print("You pressed the button ") function sends the keystrokes encapsulated by the literal

string to the USB host without pressing the “Enter” key on the keyboard.

The Keyboard.print(counter) function converts the ‘counter’ variable to a decimal string and send the

represented keystrokes to the USB host without pressing the “Enter” key on the keyboard.

The Keyboard.println(" times.") function sends the keystrokes encapsulated by the literal string to the

USB host then send the “Enter” key on the keyboard.

Check off

Customize the message that is displayed when the button is pressed.

If you are not using a MS Windows computer connect your board running this program to a MS

Windows computer and open the device manager. Next open the “Keyboards”, “Mice and other

pointing devices” and “Ports” hierarchy tabs and note how many items are in each tab. Next press and

hold the reset button while looking at the device manager.

Be prepared to answer the following questions:

How do these tabs change when reset is held down?

Even though Serial.Begin() is not called in this program does the USB Host see a serial port?

Demonstrate the program to the instructor.

 //21//

Part 2 – USB -> Keyboard -> KeyboardMessage Customization
Modify the program in part 1 so that is sends a custom message when the button is pressed. Also have

the program send the same message to the USB Serial port using the Serial object.

Check off

Demonstrate the program to the instructor.

Part 3 – USB -> Keyboard -> KeyboardLogout
Open the KeyboardLogout example program found in the File -> Examples -> 09.USB -> Keyboard menu.

Modify the value of the ‘platform’ variable to match the operating system you are using (or closest to it)

to one of the three listed operating systems defined with the preprocessor defines listed above it (OSX,

WINDOWS, UBUNTU).

Modify the digitalRead() in the first line of the loop() to utilize the program button on the Fubarino (Hint:

PIN_BTN1).

WARNING: This program uses keyboard shortcuts to log you out of your user session in the selected

platform. Make sure you have all data saved before testing this program.

Build and upload this program to the Fubarino.

Analysis

The Keyboard.press() simulate pressing, but not releasing a key on the keyboard).

The Keyboard.releaseAll() causes all currently pressed keys to be released.

The Keyboard.write() sends a single character to the USB Host.

Checkoff

Contrast what you think are the differences between Keyboard.write() and Keyboard.print().

Demonstrate the program to the instructor.

Part 4 – USB -> Keyboard -> KeyboardSerial
Try out the KeyboardSerial example program found in the File -> Examples -> 09.USB -> Keyboard menu.

This program just types back on the keyboard the characters+1 received over the USB Serial port.

Build and upload and test this program to the Fubarino.

Checkoff

Demonstrate the program to the instructor.

 //22//

Part 5 – USB -> Mouse
Try out the mouse program:

/* Mouse Button */

#include "Mouse.h"

// set pin numbers for the five buttons:

int range = 5; // output range of X or Y movement; affects

movement speed

int responseDelay = 10; // response delay of the mouse, in ms

void setup() {

 // initialize the buttons' inputs:

 pinMode(PIN_BTN1, INPUT);

 // initialize mouse control:

 Mouse.begin();

}

void loop() {

 // read the buttons:

 int clickState = digitalRead(PIN_BTN1);

 // if the mouse button is pressed:

 if (clickState == LOW) {

 if (!Mouse.isPressed(MOUSE_LEFT)) { // if the mouse is not pressed, press

it:

 Mouse.press(MOUSE_LEFT);

 }

 }

 // else the mouse button is not pressed:

 else {

 if (Mouse.isPressed(MOUSE_LEFT)) { // if the mouse is pressed, release

it:

 Mouse.release(MOUSE_LEFT);

 }

 }

 delay(responseDelay); // a delay so the mouse doesn't move too fast:

}

Build and upload and test this program to the Fubarino.

Checkoff

Demonstrate the program to the instructor.

 //23//

Part 6 – USB -> Mouse
Modify the program above to cause mouse to move based on a value read from an ADC port of the

Fubarino.

Hint: Mouse.move(xReading, yReading, wheel);

Checkoff

Demonstrate the program to the instructor.

Part 7 – Ghost in the machine
Write a program that every 10 seconds launches notepad (Windows+R to run) then “notepad+ENTER”

then waits 1 second and prints out “There is a ghost in the machine”

Hint: Use the Keyboard Modifiers table to find non-printable key board characters. KEY_LEFT_GUI is the

windows key on a Windows computer or the Special key on an Apple computer.

Checkoff

Demonstrate the program to the instructor.

Part 8 – Mouse to Parser
Modify your parser to add “click” and “release”: command the mouse button.

Checkoff

Demonstrate the program to the instructor.

Homework / Independent Study– USB -> Keyboard -> KeyboardReprogram
The KeyboardReprogram example uses keystrokes to cause the Arduino IDE to create a new blank

sketch then it enters a custom program then compiles and uploads it to an attached board. It’s an

interesting idea work investigating.

