

 //1//

Lab 10 - Serial Peripheral Interface/ LCD Display
In this lab you are going to learn about how to use LCD displays and practice reading some datasheets.

Part 1 – Connecting the Chips
In your parser project add a new tab named "LCD.h"

Copy this code into that tab

uint8_t LCDS301C31TR_map [16] = { 0x3f };

class LCDS301C31TR

{

 void lcd_out(uint32_t value)

 {

 digitalWrite(LCDS301C31TR_cs,LOW);

 SPI.transfer((uint8_t)((value >> 0) & 0xff));

 SPI.transfer((uint8_t)((value >> 8) & 0xff));

 SPI.transfer((uint8_t)((value >> 16) & 0xff));

 digitalWrite(LCDS301C31TR_cs,HIGH);

 }

 uint8_t LCDS301C31TR_cs;

 public:

 uint32_t lcd_value;

 LCDS301C31TR(uint8_t cs)

 {

 pinMode(cs, OUTPUT);

 LCDS301C31TR_cs = cs;

 SPI.begin();

 }

 void lcd_present()

 {

 static uint8_t inverted = 0;

 if(inverted)

 {

 lcd_out(~lcd_value);

 inverted = 0;

 }

 else

 {

 lcd_out(lcd_value);

 inverted = 1;

 }

 }

 uint8_t lcd_control(char* command)

 {

 if(strncmp(command, "lcd.", 4) == 0){

 char *sub_command;

 //2//

 sub_command = &command[4];

 if(strcmp(sub_command, "inc") == 0) {

 if(lcd_value == 0)

 lcd_value = 1;

 else

 lcd_value <<= 1;

 lcd_out(lcd_value);

 }

 else

 {

 return 0; //return false if lcd command not found

 }

 return 1; //return true if lcd command and found

 }

 else

 return 0; //return false if not lcd command

 }

 void lcd_display_hex(uint16_t value) {

 lcd_value = (

 ((uint32_t)LCDS301C31TR_map[(value >> 8) & 0x0f]) << 16 |

 ((uint32_t)LCDS301C31TR_map[(value >> 4) & 0x0f]) << 8 |

 ((uint32_t)LCDS301C31TR_map[(value >> 0) & 0x0f])

);

 lcd_present();

 }

 void lcd_display_base10(uint16_t value) {

 uint16_t v100 = value / 100;

 uint16_t v10 = (value - (v100 * 100)) / 10;

 uint16_t v1 = (value - (v100 * 100) - (v10 * 10));

 lcd_value = (

 ((uint32_t)LCDS301C31TR_map[v100]) << 16 |

 ((uint32_t)LCDS301C31TR_map[v10]) << 8 |

 ((uint32_t)LCDS301C31TR_map[v1])

);

 lcd_present();

 }

};

At the top of your parser code

#include <SPI.h> //use the SPI library

#include "LCD.h" //needed because it is .h

LCDS301C31TR LCD(9); //create instance of class from LCD.h

 //with pin 9 as chip select

Add a call to LCD.lcd_present() in the loop function so that it is called every cycle

May need to add delay (10)

 //3//

Finally add the following to the commands in your parser

 else if (LCD.lcd_control(command)); //just one line adds the commands

 //contained in lcd_control

 //4//

Connect the Shift Registers

Looking at the provided diagram and the datasheets connect the shift registers and LCD to the

Microcontroller. With 0 connected to a 1 to b ...

Run program and verify it and the LCD are working.

Test that the "lcd.inc" command moves the active pixel on the LCD.

Check off

Call the instructor over see your program and LCD in action.

Be prepared to show where the "lcd.inc" command came from and explain how it works.

Part 2 – Character Bitmaps

Create a bitmap for each character in the provided table.

Looking at this lecture notes for this lab, for pictures and the order of bits determine Hex codes

for all numbers and letters. Put them in the provided worksheet.

 //5//

Check off

Call the instructor over see your values.

Value p g f e d c b a Hex Value p g f e d c b a Hex

0 I

1 J

2 K

3 L

4 M

5 N

6 O

7 P

8 Q

9 R

A S

B T

C U

D V

E W

F X

G Y

H Z

 //6//

Part 3 – Using the Codes
Make Array

In the lcd.h file there is a nearly empty array use the codes you just generated to fill in the array for 0-F

so that the lcd_display_hex function has data to use.

Add calls to lcd_display_hex in "count up" and "count down" so that the numbers are displayed on the

LCD also.

Check off

Call the instructor over see your program and LCD in action.

Part 4 – Display your Initials
Add a command called “lcd.me” to the lcd_control code

Assign the hex values for your initials directly to the variable lcd_value so that they show on the LCD

 else if(strcmp(sub_command, "me") == 0) {

 lcd_value = LCDS301C31TR_map['J' - 'A' + 10] << 16 |

 LCDS301C31TR_map['S' - 'A' + 10] << 8 |

 LCDS301C31TR_map['C' - 'A' + 10] << 0;

 }

 else

Check off

Call the instructor over see your program in action.

Part 5 – Clear the display
Add a command called “lcd.clear”

Assign the hex values to blank out the LCD by directly writing to the variable lcd_value so that LCD will

blank out when issued

 else if(strcmp(sub_command, "clear") == 0) {

 lcd_value = 0;

 }

Check off

Call the instructor over see your program in action.

 //7//

Part 6 – Create a LCD chase pattern
Add a command called “lcd.chase”

Cause the LCD to display a chase pattern of your choice

 else if(strcmp(sub_command, "chase") == 0) {

 // loop (while or for)

 // in loop call lcd_present();

 }

Check off

Call the instructor over see your program in action.

Part 7 – Display ADC on LCD

Place in your code a call to lcd_display_hex that will continuously update the LCD with the output from

an ADC connected to a pot.

Check off

Call the instructor over see your program in action.

Part 8 – Volt Meter
 Make a copy of the lcd_display_hex function and modify it to output base10 instead of hex.

Replace the direct ADC value with one using base 10 converted to volts.

LCD.lcd_display_base10(((uint32_t)analogRead(A7)*330)/1023); //convert adc to

volts*100

LCD.lcd_value=LCD.lcd_value | 0x800000; //add the decimal point

Check off

Call the instructor over see your program in action.

